Cours de mathématiques

Premiere Spécialité

RACHID GUEJDAD




Copyright © 2021 Rachid Guejdad
RGUEJDAD @ ACMATHEMATICA.COM
HTTPS://RGUEJDAD.COM

Deuxieme edition



(Contents

1.1
1.2
1.3
1.3.1
1.3.2
14

1.5

1.5.1
1.5.2
1.5.3

2.1
2.2

2.3
23.1
232

LOGIQUE, RAISONNEMENTS ET ALGORITHMIQUE

Bases de la logique et raisonnements
Introduction

Vocabulaire mathématique de base
Connecteurs logiques

Limplication . ...
EQUIVAIENCE . . o oot

Quantificateurs logiques
Les grands types de raisonnement

Le raisonnement déductif . ... . .. ...
Raisonnement parl’'absurde . .. ... . e
Raisonnement par disjonctionde cas . . ......... ... e e

ALGEBRE

Equc’rions polynomiales du second degré

Introduction

Fonction polynomiale de second degré a une seule variable.
Comment résoudre une équation polynomiale de second degré ?

Outilsde résolution .. ... .
Méthodologie de résolution ... ...

10
11
11
12
13

13
14
14
14



24
2.5

3.1
3.2
3.3
3.4

3.5

3.5.1
3.5.2

4.1
4.2
4.3
4.4

5.1

5.2

5.2.1
522

5.3
5.3.1
53.2

6.1
6.2
6.3
6.4
6.5

7.1

Qu’en est-il des inéquations ?
Représentation graphique d’un polynéme de second degré

Les suites numériques

Introduction

Premiéres notions

Suites arithmétiques

Suites géométriques

Comportement d’une suite numérique.

Variation d’une suite nUmMérique. .. ... ..
Intfroduction intuitive du comportement asymptotique. . ...............

PROBABILITES ET VARIABLES ALEATOIRES

Probabilités conditionnelles
Introduction

Rappels de seconde

Probabilités conditionnelles
Théoréme des probabilités totales

GEOMETRIE

Fonctions trigonomeétriques
Introduction
Le cercle trigonométrique, I’enroulement de la droite sur le cercle

Cercle trigonométrique et limites de lamesure endegré ... ...........
L'enroulement de la droite sur le cercle et la mesure enradian . .. ..... ..

Fonctions trigonométriques

Cosinus et sinusd’'unnombreréel .............. ... . . . . i
Propriétés analytiques des fonctions cosinusetsinus ..................

Produit scalaire dans le plan

Introduction

Le défaut d’orthogonalité ?

Les différentes facons de définir le produit scalaire
Propriétés du produit scalaire

Applications du produit scalaire : Relations métriques dans un triangle.

ANALYSE

Dérivées des fonctions réelles
Introduction

23
25

27
28
29
32

33

34
35

39
40
42
44

47

48

48
49

52
52
55

57
57
58
59

65



7.2

7.3

7.3.1
7.3.2

74
7.5

Nombre dérivé et tangente
La fonction dérivée

Construction ........ ... ... ... .. . .. ...

Dérivées des fonctions usuelles et opérations
Dérivée et variations d’une fonction
Dérivées et extrema d’une fonction

66

68
68
69

70
71






oo T -
N wWN —

Bases de la logique et raisonnements . 9
Introduction

Vocabulaire mathématique de base
Connecteurs logiques

Quantificateurs logiques

Les grands types de raisonnement






1.1

1. Bases de la logique et raisonnements
. . e - —— r

Introduction

Qui dit mathématiques, dit aussi logique et raisonnement. Mais il faut savoir que ces deux notions
n’ont pas, en mathématiques, la méme définition lexicale que vous avez 1’habitude de leur associer.
Ils veulent dire des choses bien plus précises que de simples synonymes de bon sens ou encore de
réflexion.Commencons par en donner les définitions:

1. Lalogique mathématique: est une discipline des mathématiques qui a pour objet son étude
en tant que langage. Ses fondamentaux les plus importants ont été posé a la fin du 19¢me
siecle. Elle est née suite a la crise des fondements qui c¢’est déclenchée suite a I’apparition
de paradoxes mathématiques a cause de la complexification des notions abordées. Pour faire
simple, ¢’est la partie des mathématiques qui s’occupe de définir ce que c’est qu’une vérité
mathématique ainsi que de poser les définitions et interactions basiques: axiome, théoréme,
implication...(Elle est pour les mathématiques ce que la grammaire est pour le francais)

2. Raisonnement mathématique: C’est tout processus d’étapes claires et liées entre des idées
qui permet de faire la démonstration d’une vérité a partir d’un autre résultat prédéfini en
avance et qui remonte un lien continu jusqu’a un axiome. On dit dans ce cas que nous avons
établi une preuve ou une démonstration de ce résultat.

Il faut savoir que ce qui précéde n’a pas toujours été prédéfini comme ca. C’est grace aux
travaux d’une succession de mathématiciens que nous en sommes arrivé l1a aujourd’hui. Ces
définitions sont dites faisant partic des mathématiques modernes.

Ce chapitre a pour but de vous initier au langage mathématique et a sa symbolique qui
remplacera au fur et a mesure le langage "courant" dans vos rédaction. C’est aussi une petite
introduction a ce qu’on appelle le formalisme mathématique.
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Vocabulaire mathématique de base

Avant d’introduire de nouvelles notions, commergons par rappeler un peu de vocabulaire que vous
ne connaissez peut étre pas !

Définition 1.2.1

1. Une démonstration: En mathématiques, une démonstration d’un résultat est un agencement

rigoureux des étapes d’un raisonnement qui mene a la conclusion du résultat a partir de

conditions préalables( appelées hypotheses), selon des principes logiques.

Un théoréme: est un résultat mathématique qui admet une démonstration.

Une proposition: est considéré comme synonyme de théoreme, mais souvent utilisée

pour désigner des résultats moins importants.

4. Une propriété: est un résultat mathématique qui découle en général de la fagon dont est
définit une notion et qui en décrit les spécificités.

5. Un axiome: Un résultat qui est universellement reconnu comme étant vrai, mais sans
admettre de démonstration.

W

la notion mathématique que vous connaissez le moins parmi les cinq ci-dessus est probablement
I’axiome. En voici donc quelques exemples célebres:

* [’axiome de I’existence d’un ensemble vide: qui permet de poser I’existence de I’ensemble
vide dans la théorie des ensembles (de Zermelo-Fraenkel 20éme siecle)

* Les postulats d’Euclide(300 Av. J-C): Dans son célebre traité les éléments, Euclide fait la
liste de cing axiomes grice auxquels il démontre tous ses résultats de géométrie plane que
vous avez fait au college:

Il existe toujours une droite qui passe par deux points du plan.

Tout segment peut étre étendu suivant sa direction en une droite (infinie).

A partir d’un segment, il existe un cercle dont le centre est un des points du segment et
dont le rayon est la longueur du segment.

Tous les angles droits sont égaux entre eux.

Etant donné un point et une droite ne passant pas par ce point, il existe une seule droite
passant par ce point et parallele a la premiere.

Définition 1.2.2 — Assertion logique.

On appelle assertion logique (ou mathématique) toute proposition qui n’admet qu’une seule
valeur logique (vraie ou fausse) dans le cadre d’une théorie précise. Une assertion est souvent
noté par une lettre majuscule entre parentheses ( On utilise souvent (P) ou (Q) ).

Une assertion peut étre vraie dans une théorie mais pas dans une autre. Il faut donc toujours se
référer au contexte ! En voici quelques exemples:

s Exemple 1.1

* Au primaire, on vous a appris que (P): "3 — 5" est une assertion fausse ( c’est impossible
de soustraire 5 de 3 puisque le premier est plus grand !!). Aujourd’hui, vous savez tous
que le résultat de cette opération est —2. Mais on ne vous a pas menti pour autant ! (P) est
effectivement une assertion fausse en théorie des entiers, mais elle est vraie dans celle des
relatifs.

 Lassertion (Q) : 1 +1 = 0 est fausse dans la théorie des entiers mais vraie en théorie
modulaire sur (Z/27Z).

* "Il pleuvra demain" n’est pas une assertion.

e "Il y a 24 heures dans une journée" est une assertion.
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1.3 Connecteurs logiques

Définition 1.3.1 — Connecteur logique.

Un connecteur logique (ou opérateur logique) est un symbole ou un mot établissant une liaison
précise entre deux propositions (ou assertions au sens définit précédemment). Il permet de
construire une assertion composée.

R) Vous avez déja vu au moins deux connecteurs logiques en seconde : celui de la conjonction
noté par "et" et celui de la disjonction noté par "ou".

Ci-joint maintenant de nouveaux opérateurs que vous ne connaissez peut-&tre pas encore. Ce sont
ceux que nous utiliserons le plus cette année.

1.3.1 Limplication
Définition 1.3.2
Une implication est une connexion logique entre deux propositions (P) et (Q) que 1’on note par
(P) = (Q). Elle exprime que la proposition (Q) (conclusion) est vraie si (P) (I’hypothese
est vraie).

L’implication (P) = (Q) est équivalente alors a I’'une des tournures de phrases suivantes:
1. Si (P) alors (Q).
2. (P) entraine/implique (Q)

m Exemple 1.2 La plupart des résultats mathématiques que vous avez fait jusqu’ici peuvent
s’exprimer sous forme d’une implication. En voici quelques exemples:

*xeN=xeR.

e x=2=x+3=5

Propriété 1.3.1 — Transitivité de I'implication.
L’implication est une connexion logique transitive. C’est a dire que si on a (P) = (Q) et
(Q) = (T) alors (P) = (T).

(Utilisation pratique en démonstrations)

L’implication est une connexion logique qui assure la validité d’un résultat du moment que
les hypotheses sont valides en plus d’€tre transitive. On ’utilise donc souvent pour démontrer un
résultat en partant d’hypothese déja acceptée comme vrai. En voici quelques exemples:

1. Montrer que tout entier positif n vérifie I’inéquation n> + 1 > 2n.

Nous allons démontrer cette proposition en utilisant des implications successives en partant
d’une vérité prédéfinie.

Soit n un entier positif. On sait déja qu’il est vrai que pour tout entier positif 7 nous avons
(n—1)% > 0. Ainsi par processus d’implications successives on peut écrire:

n—12>0 = n*-2n+1>0
= n?+1>2n

Une fois arrivé a la fin, on dit alors que nous avons démontré le résultat par implications

successives.

Attention: Il faut bien évidement que vos transitions par implication soient toutes vraies!
2. Montrer que la somme de deux nombres entier successifs est toujours impaire. (Je vous

laisse le soin de faire cette démonstration pour vous entrainer)
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1.3.2 Equivalence
Définition 1.3.3
On dit que deux propositions (P) et (Q) sont équivalentes si les deux implications (P) = (Q) et
(Q) = (P) sont vérifiées. On note alors (P) < (Q). On dit que (P) est vraie si et seulement si
(Q) est vraie.
L’équivalence traduit une égalité logique. C’est a dire que les deux propositions sont vraie (ou
fausse) simultanément.

La différence entre une équivalence et une simple implication est que la deuxieme ne donne aucune
information sur I’état de (P) lorsque (Q) est vraie (Pouvez-vous me dire pourquoi ?).
On considere I’implication suivante a titre d’exemple:

(P):x>0 e y>0=(Q):xy>0

Cette implication peut étre interprétée de la facon suivante: Si (P) est vraie alors forcement (Q)
I’est aussi. Sauf que si (Q) est vraie, on ne peut rien dire sur la valeur logique de (P).

= Exemple 1.3
Beaucoup de théorémes et de résultats que vous connaissez déja sont des équivalences. Je vais
en citer quelques-uns ici et je laisse a votre charge la formulation mathématique sous forme
d’équivalences.

* Le théoreme de Pythagore.
¢ Le théoreme de Thales ( dit "de Thales").

Propriété 1.3.2 — Transitivité et commutativité de I'équivalence.

1. Comme c’est le cas pour I’implication, I’équivalence est transitive. C’est a dire que si on
se donne trois propositions (P), (Q) et (T'), alors nous avons le résultat suivant:
Si (P) < (Q) et (Q) < (T) alors nous avons aussi (P) < (T)

2. L’équivalence est aussi commutative. C’est a dire que (P) < (Q) et (Q) < (P) veulent
dire la méme chose.

(Utilisation pratique en démonstrations)

L’équivalence est utilisée dans plusieurs procédés de démonstration que vous connaissez déja. Nous
allons en énumérer quelques uns:
1. La résolution d’équations. Par exemple: 5x+3 = 0.
Jusqu’ici, vous avez utilisé des mots tels que implique, alors, donc... pour faire le lien entre
vos différentes étapes du raisonnement. Maintenant, vous pouvez tout simplement écrire:

5x+3=0 & 5x=-3

= X= 5
Et n’oubliez pas de rajouter a la fin une phrase de conclusion du type:
L’ensemble des solutions de I’équation est S = {%3}
2. La preuve par équivalence successives ou par double sens d’implications.
Essayer de montre le résultat suivant pour y réfléchir en autonomie:
Pourtoutn € N, n pair<n®  pair
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Quantificateurs logiques

Les quantificateurs logiques sont des symboles mathématiques qui ont un sens tres précis et
qui aident a mieux formaliser les propositions et assertions mathématiques en les juxtaposant
avec des prédicats. Mais je ne vais pas rentrer dans les détails de ce que c’est qu'un prédicat
ici.

Définition 1.4.1

* Le quantificateur existentiel 3 : Il est utilisé pour symboliser I’existence d’au moins
un élément dans un ensemble qui vérifie une proposition.

* Le quantificateur existentiel unitaire 3! : Il est utilisé pour symboliser 1’existence
d’exactement un seul et unique élément dans un ensemble qui vérifie une proposition.

* Le quantificateur universel v : Il sert & indiquer que tous les éléments d’un ensemble
vérifient une proposition.

s Exemple 1.4
Voici quelques exemples et contre-exemples de 1’utilisation de quantificateurs.
1. Bonne utilisation des quantificateurs:
e IxeR,x+1=0.
e VxeR,x*>>0.
e VxeR,IyeR,x+y=0.
2. Mauvaises utilisations:
e VxeR,x+1=0.
e JxeR,x>>0.
e IxeRVyeR x+y=0.

Pour finir, voici quelques informations complémentaires, mais trés importantes :
1. Dans une expression du type Vx € E, P(x), la proposition ne dépends pas d’un x en particulier.
C’est ce qu’on appelle une proposition avec une variable muette.
2. Les quantificateurs sont toujours placés avant I’assertion mathématique qu’ils quantifient.
3. L’emploi des quantificateurs en guise d’abréviation au milieu d’une phrase en francais est
totalement exclu et refusé. Ils doivent figurer seulement dans une phrase mathématique
formalisée.
4. L’ordre des quantificateurs est tres important lorsqu’ils sont de natures différentes. Changer
I’ordre change automatiquement le sens !
Vérifions maintenant le niveau de ta compréhension de toutes ces notions :

Exercice 1.1
Démontrer chacun des résultats suivants:

e VxeRL, x+-2>2
X

c VIxt2—a=lex=1.
cdPta=b+bsa=>b

Les grands types de raisonnement

Ce paragraphe a pour objet d’énumérer les différents types de procédés de raisonnements que nous
allons utiliser tout au long de 1’année. On consideére dans toute la suite du chapitre que (P) et (Q)
désignent deux propositions quelconques.
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Le raisonnement déductif
Définition 1.5.1

Le procédé d’un raisonnement déductif est le suivant:

Quand (P) est une proposition vraie et que (P) = (Q) alors (Q) est vraie.

R) Jene m’attarde pas trop sur celui-ci puisqu’on en a déja parlé auparavant. Voir le paragraphe
sur I’implication (1.3.1).

Raisonnement par I'absurde
Définition 1.5.2
Le procédé du raisonnement par absurde est le suivant:
1. On suppose que la négation de (P) est vraie.
2. On montre qu’elle implique une proposition (Q) qui est fausse.

= Exemple 1.5
CLASSIQUE: Montrons que (P) : v2 ¢ Q.
Supposons par absurde que (P) : v/2 € Q est vraie. On a donc:

V2€eQ = EI(a,b)E(N*)Z;\@:g et pged(a,b)=1

a?

= 2% = a?
On arrive donc 4 la conclusion que a? est un nombre pair.
Lemme: (Démonstration a faire en exercice)

a’ pair = a pair

En utilisant le lemme ci-dessus, on en déduit que a est pair, donc il peut s’écrire sous la forme
a = 2p avec p un entier naturel positif. Ainsi nous avons:

20 = (2p)* = 2b*=4p’
= b =2p’

Cela veut dire que b” est pair et par conséquent b 1’est aussi.
On arrive finalement a un résultat qui affirme que a et b sont tous les deux pairs, ce qui contredit

pged(a,b) = 1.
Puisqu’on conclut par une contradiction, on en déduit donc que (P) est fausse, et donc que
(P) : V2 & Q est vraie. .

Raisonnement par disjonction de cas
Définition 1.5.3
On considere une proposition du type, Vx € E,P(x). Avec E un ensemble sur lequel on veut
montrer que P(x) est vraie.
Un raisonnement par disjonction de cas, consiste a démontrer la propriété sur une partie A de
E puis de le faire pour le reste des éléments qui n’appartiennent pas a A.

= Exemple 1.6

Montrons que pour tout n € N, n> + 37 est un nombre pair.

Un nombre entier n peut étre soit pair ou impair. On procede donc a démontrer que dans les deux
cas, n* + 3n est toujours pair:
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* Si n est un nombre pair:

JkeZ,n=2k = n>=4k*> et 3n=06k
=  n’+3n=4k>+6k
= n?43n=2(2k>+3k)

Puisqu’on a réussi a écrire n® 4 3n sous la forme 2K avec K = 2k* + 3k alors on a bien
démontré que c’était un nombre pair.
* Si n est un nombre impair:

FkecZn=2k+1 = n*=4k>+4k+1 et 3n=06k+3
= n?+3n=4k*+10k+4
= n? 4 3n = 2(2k* + 5k +2)

Puisqu’on a réussi a écrire n> + 3n sous la forme 2K’ avec K’ = 2k + 5k + 2 alors on a bien
démontré que c’était un nombre pair.
On en conclut alors que n” + 3n est toujours pair indépendamment des différents cas de figures. m
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2.1

Introduction

La résolution d’équations a été et est toujours aujourd’hui au coeur de la pratique des mathématiques.
Non seulement elle est essentielle dans notre discipline en elle méme, mais elle est surtout tres
utile dans les autres sciences dures. Modéliser un phénomene de la vie réelle en physique, chimie
ou encore en science de la vie et de la terre nous mene toujours vers des expressions sous forme
d’équations. Il ne faut donc pas étre surpris de voir que les mathématiciens ont passé beaucoup de
temps a élaborer des méthodes de plus en plus compliquées pour les résoudre.

Dans ce chapitre, nous allons principalement nous intéresser a des équations qui s’écrivent sous la
forme suivante:

ax* +bx+c=0

Avec:

* a,b,c € R tels que a # 0.

* x est une inconnue qui vérifie I’égalité.
Ce type d’équations s’appelle : Une équations polynomiale du second degré a une seule
variable.
Les mathématiciens savent résoudre ce genre d’équations depuis le 9™ siecle. C’est en effet le
mathématicien perse Al Khawarizmi (qui au passage a donné son nom aux algorithmes) qui a posé
la méthode utilisée jusqu’a aujourd’hui.
Méme si la contribution d’ Al Khawarizmi est considérable dans le domaine de 1’algebre, il resta
toute sa vie tres décu de ne pas avoir pu aller au-dela de la résolution des équations de second degré.
Il était fasciné par 1’idée de trouver une méthode qui pourrait permettre de résoudre n’importe
quelle équation sous la forme P(x) = 0, loin de se douter que c’était en fait impossible.

Il faudra attendre sept siecles complets, avec tout autant de mathématiciens décus, avant que
les équations du troisieme et quatrieme degrés ne soient résolues par radicaux. On doit cet exploit
a deux mathématiciens de la renaissance italienne: Nicolo Fontana, dit "Tartaglia" et Girolamo
Cardano.
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La derniere étape de cette aventure aura lieu entre 1799 et 1824 avec le théoréme d’Abel-
Ruffini, qui vient prouver qu’il n’y aucun moyen de résoudre, par radicaux, les équations algébriques
dont le degré est supérieur a 5. Cela amena les mathématiciens a chercher des méthodes alternatives
et menera plus tard vers la mise en place de toute une théorie qui s’appelle la théorie de Galois.
Mais c’est encore une autre histoire !

Un peu d’étymologie:

Le mot "Polynéme'' provient des racines grecques poly et néme.

e nome: Du grec ancien polus qui peut tre traduit par beaucoup ou plusieurs. C’est un
préfixe utilisé pour signifier que le mot global est constitué de plusieurs éléments du type du
mot qui le suit.

e nome: vient du mot grec onoma signifiant nom ou terme.

Fonction polynomiale de second degré a une seule variable.

Avant de définir ce que c’est qu’une fonction polynomiale de second degré & une seule variable,
commengons par définir ce que c’est qu’une fonction polynomiale.

Définition 2.2.1 — Polynéme de degré n.
Soitn € N.
On appelle fonction polynomiale de degré n, toute expression algébrique formée par des
sommes et des produits de constantes et d’indéterminées.
Une fonction polynomiale a une seule variable notée P(x) est toujours exprimée de la maniére
suivante:

P(x) = ap+ aix+arx +azx + ... + a,x"

Avec: ag,ay,az,...,a, € R des constantes telles que a,, # 0, n € N et x une variable.
La constante n € N s’appelle degré du polyndme P(x). C’est la plus grande puissance de la
variable x présente dans I’expression de la fonction polynomiale.

1. Une fonction polynomiale de degré n sera appelée, par abus de langage, Polynéme de
degré n.

2. Comme pour toute autre fonction, on peut calculer ’image P(x) d’un antécédent réel
x. Il est aussi intéressant de noter que toute fonction polynomiale admet R comme son
domaine de définition.

= Exemple 2.1

o P(x) = 3x? 4+ 5xy* + 23 est un polynome de degré 5 a trois variables.
* Q(x) = x> — mx+9 est un polyndme 4 une seule variable de degré 3.
s T(x) = /x —x? n’est pas un polynéme.
* Tous les nombres réels peuvent étre considérés comme un polyndme de degré 0. Par exemple,
le nombre 3 peut étre considéré comme un polyndme et dans ce cas on écrit: Vx € R; P(x) = 3.
* Les fonctions affines et linéaires sont des polyndmes de degré 1. Par exemple, F(x) = 2x+5
est un polyndme.
]

Définition 2.2.2 — fonction polynomiale du second degré (Polyndme de second degré).

On appelle polyndme de second degré ou encore trindme, tout polyndme P(x) qui associe au
réel x une image de la forme P(x) = ax> + bx+ c. Avec a,b,c € R tels que a # 0.
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I Les réels a, b et ¢ sont dits coefficients du trindme P(x).

s Exemple 2.2
Voici des exemples de polyndmes de second degré:
o Pi(x)=2x*+3x+1

o Py(x) =x°
o P3(x) = —x*+1
o Py(x) = mx® + 12x

2.3 Comment résoudre une équation polynomiale de second degré ?

Maintenant que nous avons défini ce que c’est qu’un polyndme de second degré, nous allons nous
intéresser a comment résoudre des équations du type P(x) = o avec o € R. Bien évidement, cela
reviens a trouver les antécédents de o par le polyndme P.

Pour faire cela, nous allons essayer de transformer 1I’écriture de P(x) de sa forme qu’on connait
jusqu’a présent vers une forme plus compacte qui nous aidera dans la résolution. Cette forme
s’appelle la forme canonique du polynéme P(x).

2.3.1 Outils de résolution

Théoreme 2.3.1 — Forme canonique.
Soit P un polynéme défini par: P(x) = ax*> +bx +c. Avec, a,b,c € R, tels que a # 0.
Il existe deux réels o et B, tels que:

P(x)=a(x—a)*+pB

Cette derniere écriture de P(x) s’appelle sa forme canonique.

On verra dans la démonstration de cette propriété que o et B peuvent s’écrire entierement en
fonction des coefficients du polyndme P de la fagon suivante:

oot
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. ﬁ__b2—4ac
o 4q2

= Exemple 2.3

* La forme canonique du polyndme P(x) = x> — 2x+2est: (x—1)>+1
* Le polyndme Q(x) = 2x* — 4x+ 3 admet comme forme canonique: 2(x — 1)? + 1

Dans I’expression de 3, le numérateur est ce qui importe le plus ! En effet, c’est cette quantité
qui permettra de déterminer les solutions de ’équation. Vu son importance, on pose alors le
définition suivante :

Définition 2.3.1 — Discriminant d’'un polynéme de second degré.

Soit P un polynéme défini par: P(x) = ax?> + bx +c Avec, a,b,c € R, tels que a # 0.

On appelle discriminant de P(x),noté A, le nombre réel:

A = b* —4dac
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= Exemple 2.4
Je vais reprendre les deux polynémes de 1’exemple précédent :
e Le discriminant de P(x) = x*> —2x+2est: A= (-2)2—4x2x1=4—-8=—4
* Le discriminant de Q(x) = 2x> —4x+3est: A= (—4)? —4x2x3=16—24 = -8

Avant de cloturer cette partie, faites I’exercice d’application suivant :

Exercice 2.1 Déterminer la forme canonique de chacune des fonctions polynomiales définies
par les expressions suivantes :

1. P(x) =x*+6x+9

2. Q(x) =4x*> —16x—5

3. H(x) = —3x*> —6x+18

Méthodologie de résolution

J’ai annoncé précédemment, notre souhait de résoudre des équations du type P(x) = z avec P(x) un
polyndme et z € R. Sachez que lorsque P(x) est un polyndome de second degré,on appelle ce genre
d’équations des équations algébriques de second degré (ou équations de second degré pour faire
simple).

Un réflex quasi-intuitif que tout mathématicien en herbe doit avoir quand il est confronté a ce genre
d’équations (et pour bien d’autres choses!), c’est de se demander ce qui se passe lorsque z =0 ?
Vous allez voir que savoir résoudre des équations de second degré du type P(x) = 0 est tout ce dont
nous avons besoin pour résoudre n’importe quelle équation plus générale P(x) = z, méme lorsque
z# 0. La propriété suivante explique pourquoi.

Propriété 2.3.2
Soient z € R et P un polynéme défini par: P(x) = ax® +bx + ¢ Avec, a,b,c € R, tels que a # 0.
On pose:

Q(x) =P(x)—z

L’équation P(x) = z a les mémes solutions que 1’équation Q(x) = 0. Dans un langage plus
mathématique, on écrit: P(x) =z < Q(x) =0.

Cette propriété est une astuce qui nous permet "d’éviter" de résoudre directement 1’équation
P(x) = z en résolvant une équation équivalente et beaucoup plus facile qui est Q(x) = 0. Le
théoréme suivant résume la méthode de résolution d’une équation de second degré a forme simplifiée

(Q(x) =0).

Théoréeme 2.3.3 — Solutions d’une équation de second degré.
Soit P(x) = ax? + bx + ¢ un polyndme de second degré avec a,b,c € R ,a # 0 et A = b*> — 4ac.
On a alors:
* Si A < 0:Léquation algébrique P(x) = 0 n’admet pas de solutions dans R.
* Si A=0: L équation admet pour solution unique dans R, & = — % qu’on appelle racine
double du polynome P.
* Si A > 0: L’équation admet pour solution dans R, le couple (a;, o) avec:

_ —b—VA _ —b+VA
- 2a  2a

o (05

o et op sont dites racines du polynéome P et elles sont distinctes.
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R) Aestpositif deés que a et c ont des signes opposés.

= Exemple 2.5
Pour résoudre 1’équation 2x> — 8x — 1 = 0 dans R, on peut procéder des deux fagons suivantes:
* En utilisant la forme canonique:
Afin de retrouver la forme canonique d’un polyndome, on procéde en complétant une identité
remarquable de la fagon suivante:

22 -8x—1=0 < 2x2 —8x+8—-8—-1=0
& 2(x* —4x+4)—-9=0
& 2(x—2)2—9:0
9
2 _Z
& (x-27 =
& x—2:\/§ ou x—2=-— %

x:\/§+2 ou x:—\/g—i-Z

~
4+3V2 4-32
S X=——7 o0U X=—r-—
2 2
* En utilisant le discriminant:
On commence par calculer A:
A = b>—4ac

6v2

Ainsi, d’apres le théoréme précédent on peut directement poser les deux solutions de
I’équation (car A > 0):

_ —b—VA _ —b+VA
- 2a  2a

En remplagant b, A et a par leur valeurs respectives, vous retrouvez exactement les mémes
résultats que dans la premiere méthode.

[04] (0%)

Comme vous avez slirement du le remarquer, on peut s’en sortir et résoudre une équation de
second degré sans avoir recours aux résultats du théoréme 2.3.3. Mais cela est plus fastidieux.
Voyons si vous avez tout compris, essayez de résoudre les équations dans I’exercice suivant :

Exercice 2.2 Résoudre dans R, les équations suivantes :
e 2% —8x=-9
e x> —x+1=0
e 3x2—-10=13x

2.4 Qu’en est-il des inéquations ?

A ce stade du cours, vous vous posez peut-étre la question suivante :

Que se passe-t-il si on remplace le signe = par <,> ? Autrement dit, et si on avait affaire a une
inéquation du second degré au lieu d’une équation ?
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Ce questionnement est tout a fait 1égitime quand on prends en considération vos connaissances
issues de 1’année derniere. Apres tout, vous savez déja comment déterminer le signe d’une
expression de la forme : (ax + b)(cx+d) et par conséquent résoudre une inéquation du type :
(ax+b)(cx+d) <0 via des tableaux de signes.
Pour I’instant, vous savez écrire un polynome de second degré P(x) sous deux forme :

1. Une forme développée : P(x) = ax’ +bx+c

2. Une forme canonique : P(x) = a(a— o)> + B
Malheureusement, aucune de ces formes ne permet d’étudier le signe de P(x) pour la simple et
bonne raison que ce n’est pas des formes factorisées. Il faut donc trouver un moyen de factoriser
P(x). C’est ce que permet le théoréme suivant :

Théoréeme 2.4.1 — Factorisation d’un polynéme de 2nd degré.
Soit P(x) = ax’ 4+ bx + ¢ un polyndme de second degré avec a,b,c € R ,a # 0 et A = b? —
4ac.Alors:
* SiA<O0: Alors P(x) n’admet pas de factorisation.
* Si A=0: Alors P(x) se factorise sous la forme a(x — a)?. (o étant la solution double de
P(x=0))
* Si A>0: Alors P(x) admet la factorisation suivante : P(x) = a(x— a;)(x — o). (Avec
oy et ap solutions de P(x) = 0)

Une fois que nous avons réussi a factoriser P(x), trouver son signe (et ainsi résoudre les équations
du type P(x) <0 ou P(x) > 0) devient beaucoup plus facile :

Propriété 2.4.2 — Signe d’un polyndme de second degré.
Soit P(x) = ax* + bx+ c un polyndme de second degré avec a,b,c € R ,a # 0.Alors:
* SiA<O0: Alors P(x) ale méme signe que a.
* Si A=0: Alors P(x) admet une racine double xy. Le polyndme s’annule pour x = xg et
prend le signe de a pour tout x # xp.
* Si A>0: Alors P(x) admet deux racines x; et x, (On suppose que x; < x2). P(x) se
comporte alors de la facon suivante:
1. Il s’annule pour x = x et x = x».
2. Il prend le signe de a pour tout x €] — oo, x1 [U]x2, +-o0].
3. 1l prend le signe de —a sur |x;,x;].

Pour se rappeler des différents cas plus facilement, nous pouvons aussi les représenter sous
forme de tableaux de signes :

* SiA<O::
X —o0 ~+o0
P(x) signe de a
* SiA=0:
X —oo o +oo

P(x) signe de a 0 signe de a
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* SiA>0:
X —oo X1 X2 o0
P(x) signe de a 0 signede —a 0 signe de a

= Exemple 2.6
Le polyndme P défini sur R par: P(x) = x> +x+ 1 est toujours positif. En effet, il suffit pour
déduire cela de calculer A. On a bien:
e A=1"—4x1x1=-3<0.
ca=1>0.
Ainsi, P(x) admet le méme signe que a = 1 pour tout x € R. Donc: Vx € R;  P(x) > 0. .

Exercice 2.3 Résoudre dans R, les inéquations suivantes :
¢ 2x2—8x< -9
e X2 —x+1>0
e 3x>—10 < 13x

Représentation graphique d’un polyndme de second degré

Vous avez vu en cours de mathématiques de 1’année derniere, que la fonction carrée (définie sur R,
par f(x) = x?) a une représentation graphique % r qui prend la forme d’une parabole. Il en est de
méme pour un polyndme de second degré...a quelques détails pres.

Vous savez aussi, que la parabole de la fonction carrée admet comme axe de symétrie 1’axe
des ordonnées et qu’elle admet I’origine du repére comme minimum. Ces deux caractéristiques
changent dans le cas d’un polyndme de second degré qui est plus général.

Théoréeme 2.5.1 — Représentation graphique d’un polynéme de second degré.
Soit P(x) = ax?> + bx + ¢ un polyndme de second degré avec a,b,c € R ,a # 0 et dont la forme

b
canonique s’écrit: P(x) = a(x — o)> + 3 avec o = ~5; et B =P(a).
a

Dans le plan rapporté a un repére orthonormé (O;7; /), la représentation graphique de P(x), notée
%p est une parabole de sommet S(a; 3) et dont I’axe de symétrie est la droite d’équation x = a.

1. Une interprétation purement géométrique du théoreme précédent est de dire: que C,
. . . (A . .
n’est rien d’autre que I’image par translation de vecteur v < [3) de la représentation

graphique %7, de la fonction carrée.
2. D’orientation de la parabole dépends entierement du signe de a:
e Sia >0, alors ‘5,, est orientée vers le haut. De plus, est un minimum de P
atteint en Q.
* Sia <0, alors %, est orientée vers le bas. De plus, B est un maximum de P
atteint en «..
3. Les points d’intersection de %), avec I’axe des abscisses, sont les points dont 1’abscisse
est solution de I’équation P(x) = 0.






3.1

Introduction

En I’année 1202 et en pleine dynamique amenée par la renaissance en Europe, fut publié un livre
intitulé ""Liber Abaci" par un mathématicien italien connu sous le nom de Léonard de Pise ou
encore sous son alias : Fibonnaci. Léonard proposa dans ce livre, comme exemple a son étude de
la dynamique des populations, un modele mathématique qui décrit la situation qu’il énonce comme
ceci:

"Chaque couple de lapins, des son troisiéme mois d’existence, engendre chaque mois
un nouveau couple de lapins, et ce indéfiniment." Fibonacci, Liber Abaci.

Il va ensuite avancer que c’est une situation mathématique qui peut étre traduite par une fonction,
dont I’espace de départ est N, et que se définie formellement (avec les écritures mathématiques
modernes) de la maniére suivante:

(ﬂ) 90:1; flzl;
" Vn > 2; cg\n—'ﬂ:tg;n—l—l"i‘cg\n

Cette séquence mathématique deviendra par la suite, I’exemple le plus célebre de ce que c’est
qu’une suite numérique.

L’objectif de ce chapitre est de vous apprendre a manipuler ce nouveau type de fonctions. Puisqu’en
effet, vous n’avez jusqu’ici, eu affaire a d’autres fonctions en dehors des fonctions réelles.

Sachez aussi que la suite numérique est I’'un des outils les plus puissants et les plus utilisés
en mathématiques. On retrouve des traces de son utilisation tres tot dans I’ histoire de I’humanité.
Presque toutes les premieres civilisations ont eu recours a une suite & un moment ou un autre:
Les grecs, les égyptiens, babyloniens...Bien évidement, aucune de celles-ci n’avais recours a
cette notion avec le formalisme précis et trés rigoureux que nous utilisions aujourd’hui. Mais
cela n’a pas empéché des mathématiciens comme Acharia Pingala (Inde, 450-200 Av.J.C),
Archimede(Grece, vers 220 Av.J.C) ou encore Héron d’Alexandrie (Egypte, premier siécle
Apr.J.C) d’établir des résultats tres intéressants !
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Premiéres notions

Commencons par définir ce que c’est qu’une suite. En réalité, il y a plusieurs facon de le faire. La
plus intuitive est de considérer qu’une suite n’est rien d’autre qu’une succession ou séquence de
nombres entiers. Cette facon de définir les choses, bien qu’étant la plus élémentaire, n’est pas
vraiment la plus adaptée a une étude formelle. Nous allons donc plutdt opter pour la définition
suivante :

Définition 3.2.1 — Suite numérique.

On appelle Une suite numérique a valeurs réelles ou plus simplement une suite, toute fonction
% définie de N dans R.

Autrement dit, est considérée comme suite toute fonction exprimée de la fagon suivante :

%: N — R

R) Afin de simplifier la manipulation des suites numériques ( que nous allons appeler dorénavant
"suite" pour faire court ) voici quelques notations a prendre en compte :

1. Pour différencier les suites des fonctions plus générales, elles seront notées de la
maniere suivante : (U,),en ou simplement (Uy), U désigne le nom de la suite, n la
variable, et la notation n € N indique que la variable peut prendre n’importe quelle
valeur de N. On peut substituer cette derniere par n > 0 qui veut dire la méme chose.

2. Comme une fonction, 'image d’un entier n par la suite (U, ) peut &tre notée U (n). Mais
puisque cela veut aussi dire "le nombre qui se trouve dans I’emplacement n", on préfere
utiliser la notation simplifiée U,, (sans les parentheses).

3. Il'y a des suites qui ne peuvent pas &tre totalement définies sur N, Elles ne le sont qu’a
partir d’'un nombre entier ng qu’on appelle "rang de définition". On note alors la suite
de la maniére suivante: (Up)p>n,

= Exemple 3.1

La suite dont le terme général est donné par: u, = — est une suite qui n’est pas définie pour n = 0.
n

On la note alors par: (u,),>1 "

Une suite peut étre introduite de plusieurs facons, dans ce cours, nous allons nous intéresser
principalement a deux d’entre elles :

* La définition d’une suite terme général.

 La définition d’une suite par récurrence.
Commencons par expliciter les deux notions :

Définition 3.2.2 — Suite définie par terme général.
Soit f une fonction définie sur R.
On dit que la suite (u,) est définie par terme général sur N lorsqu’elle peut s’écrire:

VneN; u,= f(n)
= Exemple 3.2
1. Les suites ci-dessous, sont définies par terme général:

e VneN; wu,=3n-2.
e VneN; v, = (=1
1

e VneN; = —.
" Y n?2+3
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2. La suite suivante, n’est pas du tout définie par terme général:

VneN;, u,=3u,_1+3

Définition 3.2.3 — Suite définie par récurrence.

Soit (u,) une suite numérique.

La suite (u,) est dite définie par récurrence lorsqu’elle est identifiée par: son premier terme
et Une relation de récurrence liant deux termes successifs.

Autrement dit, lorsqu’elle est présentée sous la forme:

()9 0=
"l tpsr = f(uy) Vn>0
Avec: @ € Ret f: R — R une fonction réelle.

= Exemple 3.3
La suite (u,) de terme général u,, = 2" peut étre définie par récurrence de la fagon suivante:

ww{“zz

Upr1 =2Xu, VYn>0
]

Voici un exercice pour vous familiariser avec la notion d’une suite ainsi que les manipulations
algébriques de base qui leur sont associés :

Exercice 3.1

Soit la suite (a,) définit par: Vn € N;  a, = 5n—4. Calculer ay, as et ajgp.
Soit (b,) la suite définie par: Vn € N; b, = 3n*> —33n+72. Comparez bs et bg.
Soit (k,) la suite définie par: kg = —5etVn € N;  k, 1 = S5k, — 7. Calculer k; et k3.
Donner une définition par terme général de chacune des suites suivantes:
* La suite (u,) des nombres paires.
* La suite (v,) des nombres impaires.
* La suite (w,) des carrés parfaits.
5. Soit (u,) la suite définie par: Vn € N;  u, = n®> + 1.
e Calculer u pour k € {0;1;2;3}
* Dans un repere orthonormé, représenter graphiquement ces quatre premiers termes
de la suite (uy,).
* Pour quelle valeur de n a-t-on u,, = 50.

= 8=

3.3 Suites arithmétiques

Nous venons de voir dans le paragraphe précédent qu’une suite peut étre générée de deux facons
principalement : Par terme général ou bien par récurrence. En étudiant d’un peu plus pres le
procédé de génération des termes, on se rends compte qu’on peut classifier les suites en différentes
catégories selon leur comportement algébrique:

1. Des suites dites arithmétiques, que nous allons voir dans ce paragraphe.

2. Des suites dites géométriques, que nous allons voir dans le paragraphe suivant.

3. Des suites qui ne sont dans aucune des deux catégories ci-dessus.
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Ce qui nous pousse a faire cette distinction est un probleme de transfert. Je m’explique : Le
format le plus simple pour manipuler une suite est le loin la définition par terme général. Se pose
alors la question : Y a-t-il un moyen facile de la retrouver ? Surtout lorsqu’une suite nous vient
définie par récurrence ?

Il se trouve, justement, que les deux catégories de suites énumérées juste avant permettent un
passage lisse d’une écriture par récurrence vers une autre par terme général.

Attention: En dehors de ces deux types de suites, le passage n’est pas toujours évident !

Définition 3.3.1 — Suite arithmétique.
Une suite est dite arithmétique, lorsqu’il y a un écart fixe entre tous les termes de celle-ci.
Autrement dit, la suite (u,) est arithmétique, si et seulement si il existe un nombre réel r tel que:

VneN, up=u,+r
Le nombre r s’appelle la raison de la suite (u,). c’est une constante de la suite arithmétique.

= Exemple 3.4

1. La suite (u,) définie par: Vn € N;  u, = Sn+ 3 est une suite arithmétique de raison 5. En
effet, on peut remarquer que:

VvneN, wu,r1 = Sn+1)+3
= 5n+5+3

(5n+3)+5

= U, +5

2. La suite (v,) définie par: Vn € N; v, = n? + 1 n’est pas arithmétique.
En effet, il suffit de calculer les trois premiers termes pour remarquer que I’écart entre eux
n’est pas constant:

up=1 ; wuy=2 ; wu=>5

Ainsiona:
Uy —up # Uy — Uy

R) Montrer qu'une suite est arithmétique ou qu’elle ne I’est pas sont deux approchent totalement
différentes. Pour réfuter un résultat (montrer qu’elle n’est pas arithmétique), il suffit de donner
un contre exemple comme dans le point 2. de I’exemple précédent.

Mais pour prouver une vérité universelle sur N (la suite est arithmétique), alors dans ce
cas il faut le faire de maniere générale et abstraite et non pour des cas particuliers. (Voir le
point 1. de I’exemple ci-dessus).

Propriété 3.3.1 — Propriétés d’une suite arithmétique.
Voici les caractéristiques propres a une suite arithmétique donnée (u,) de raison r:
1. Larelation entre deux termes quelconques uy, et u, (avec p < m) de la suite est donnée
par la formule suivante :
Uy =up+ (m—p).r

2. Pour calculer la somme de termes successifs d’une suite u, +up 1 +up2+ ...+ ity
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qu’on peut aussi noter
m
) e
k=p
On utilise la formule suivante:

Up,+Uu
Zuk:ux(m—p—i-l)
= 2

=p

3. La somme des m premiers termes de la suite ug + uy 4+ u3 + ... + u,, est un cas particulier
de celui d’avant avec p = 0. Ainsi,on peut trouver facilement que:

Uy + Uy,

> x (m+1)

m
Up+ur+uy+...+u, = Z“k:
k=0

s Exemple 3.5

1. Soit (u,) une suite arithmétique de raison r = 3 et de premier terme 1o = 10. Alors :
¢ Pour calculer us, il suffit de faire:

us =up+(5—0) x r=10+5x3 =25

e Lasomme S = up +u3 + - - - + ujgp est donnée par:

100

up + U100
S= = - x(100-2+1
kgzuk 2 x ( +1)

Je vous laisse finir le calcul.
2. On considere une suite arithmétique (v,) telle que: v4 = 15 et vyo = —120.
Déterminer la raison r de la suite (v,,).

Théoréme 3.3.2 — Comment retrouver le terme général d’une suite arithmétique ?.
Soit (u,) une suite arithmétique de raison r et de premier terme uy.
Son terme général u, est donné par:

VneN;, u,=uy+nr

R) Ce dernier résultat est juste un cas particulier du point 1 de la propriét€ précédente. Mais
qu’il est celui nous utilisons le plus pour retrouver le terme général d’une suite arithmétique,
il est celui que nous mettons souvent en avant.

s Exemple 3.6
1. La suite arithmétique de raison 7 et de premier terme 2 a pour terme général:
VneN;, u,=2+nm

2. La suite (v,) donnée par le terme général Vn € N; v, =; +3n est arithmétique de raison
r = 3 et de premier terme vg = 1.
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Exercice 3.2
Soit (a,) une suite arithmétique de raison —2 telle que ag = 7.
1. Exprimer a, en fonction de n pour tout n € N.
2. Dans repere orthonormé, représenter graphiquement, les quatre premiers termes de (u,,)

3.4 Suites géométriques
Définition 3.4.1 — Suite géométrique.
Une suite est dite géométrique, si et seulement si il existe un nombre réel non nul g tel que:

VneN, upp1=qxuy
Le nombre g s’appelle la raison de la suite (u,). C’est une constante de la suite géométrique.

= Exemple 3.7

1. La suite (u,) définie par: Vn € N; 1, = 2 x 5" est une suite géométrique de raison 5. En
effet, on peut remarquer que:

VneN, wu = 2x5"!
2x (5" x5)
(2x5") x5
= Uy, X5

2. Lasuite (v,) définie par: Vn € N*; v, = n? n’est pas géométrique.
En effet, il suffit de calculer les trois premiers termes pour remarquer que la suite n’est pas géométrique:
(Car le rapport entre des termes consécutifs ne sera pas constant !)

m=1 5 w=4 ; uz=9
Ainsion a :
I/l37é1/£2
u U

Propriété 3.4.1 — Propriétés d’'une suite géométrique.
Voici les caractéristiques propres a une suite géométrique donnée (u,) de raison g:
1. La relation entre deux termes quelconques uy, et u, (avec p < m) de la suite est donnée
par la formule suivante :
Up =up X q" P

2. Pour calculer la somme de termes successifs d’une suite u, + upq1 +up2 + ... + Uy
qu’on peut aussi noter
m
R
k=p

On utilise la formule suivante:

La somme des m premiers termes de la suite ug + u; + u3 + ... + u,, est un cas particulier
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de celui d’avant avec p = 0. Ainsi,on peut trouver facilement que:

m m+1

1—
upt+ur+uy+...+u, = Zuk :uo.%
k=0 —9q
= Exemple 3.8

1. Soit (u,) une suite géométrique de raison r = 3 et de premier terme u; = 10. Alors :
e Pour calculer us, il suffit de faire:

us = x ¢°°2 =10x 3* =270

e Lasomme S = up +u3 + - - - +ujgo est donnée par:

100 1— 3100+172
S: = X —

Je vous laisse finir le calcul.
2. On considere une suite géométrique (v,) telle que: v4 = 10 et vy = 40.
Déterminer la raison g de la suite (v,,).

Théoréme 3.4.2 — Comment retrouver le terme général d’une suite géométrique ?.
Soit (u,) une suite géométrique de raison g et de premier terme uy.
Son terme général u, est donné par:

VneN; wu,=uyxq"

= Exemple 3.9

1. La suite géométrique de raison 7 et de premier terme 2 a pour terme général:
vheN; u,=2xx"

2. La suite (v,) donnée par le terme général Vn € N; v, = 2"! est géométrique de raison
g = 2 et de premier terme vy = 2

Exercice 3.3

Soit (k,) une suite géométrique de raison négative telle que : ks = 2040 et kg = 510.
1. Calculer sa raison gq.
2. Exprimer k, en fonction de n.
3. Calculer ky.

3.5 Comportement d’une suite numérique.

Lorsqu’on parle du comportement d’une suite, nous voulons dire par cela deux choses :
* Les variations de la suite : Qui permettent de comparer les termes les uns aux autres (est-ce
qu’ils croient,décroient...).
* Le comportement asymptotique: Qui permet de mieux appréhender I’évolution de la suite
face aux trés grands nombres. Est-ce qu’elle va atteindre une limite, ne sera jamais bornée...
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3.5.1 Variation d’une suite numérique.

Puisqu’une suite n’est rien d’autre qu’un cas particulier d’'une fonction, il est assez normal
qu’elle hérite des propriétés générales de cette derniere. Elle peut donc étre croissante ou
décroissante.C’est presque la méme chose...a quelques détails pres !

Définition 3.5.1 — Variation d’une suite numérique.
Soit (u,) une suite numérique. On dit que:
1. La suite (u,) est croissante sur N si et seulement si:

VneN, upi1>up.
2. La suite (u,) est décroissante sur N si et seulement si:
YneN, w1 <uy,.
3. La suite (u,) est constante sur N si et seulement si:
VneN, u, 1 =u,
= Exemple 3.10

1. La suite (u,) définie par: Vn € N;u, = n” est une suite croissante. En effet, on a:

Upy1 = (n+ 1)2; u, =n’

Or nous avons, (n+1)2 =n?4+2n+1 > n?. Ainsi, Vn € N; w41 > .
2. Utiliser un raisonnement similaire pour démontrer que la suite (v,) définie par:
. 1
VneN";, v,=-—
n

est une suite décroissante.

R

1. ATTENTION:

Une suite (u,,) peut changer de sens de variation soit de maniére ordonnée soit d’une
maniere chaotique !
Un exemple classique d’une telle suite est la suite définie par :

VeN, u,=(-1)"
Les termes de cette suite sont 1 et —1 de maniere alternée suivant la parité de n. Elle
n’est ni croissante, ni décroissante ni constante sur N

2. Une suite qui garde la méme variation sur la totalité de N est dite: suite monotone.

3. Une suite peut varier de maniere tres aléatoire sur plusieurs termes, puis garder une
méme variation a partir d’un rang n,. On dit alors que cette suite est monotone
(croissante ou décroissante) a partir du rang 7,,.

Exercice 3.4

Soit (#,) la suite définie sur N, par :
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2
1. Démontrer que : Vn € N, 1 — 1t = m
n n

2. En déduire le sens de variation de la suite (z,) sur N.

Introduction intuitive du comportement asymptotique.

Les situations réelles modélisées avec des suites viennent souvent avec des questions concernant
les limites possibles du modele. Pour mieux comprendre ce qu’on veux dire par cela, essayons de
voir une situation pratique:

m Exemple 3.11 — Une situation de ricochets.

Imaginons qu’on est a coté d’un lac et qu’on décide de s’entrainer a faire des ricochets.

On considere qu’apres avoir lancé un caillou, il ricoche pour la premiere fois aprés avoir parcouru
2 metres et qu’a partir de 13, il va parcourir a chaque fois, avant de ricocher & nouveau, la moitié¢ de
la distance qu’il avait parcouru entre les deux précédents ricochets.

Afin de modéliser cette situation, on peut considérer une suite notée (u,) de telle facon que:

Vn € N*,  u, corresponde a la distance parcouru entre le (n — 1)-eéme et le n-&me ricochets.
Ainsi, on obtient que:

® M1:2
1

. M2:§><M1:1
1

o Mn—ixunfl

A partir de cette explication, on peut en déduire que cette suite est géométrique de raison g = 3 et

de premier terme u#; = 2. Son terme général s’écrit donc :

1

VneN*; u,= T

On se pose alors la question suivante:
Quelle est la distance maximale que le caillou peut atteindre avant de couler au fond du lac ?

Afin de résoudre cette problématique, je vous invite a répondre aux questions intermédiaires

suivantes:
n

1. Donner, en fonction de n, I’expression de D(n) = ¥, u.
k=1
Que représente cette quantité ?

2.

3. Implémenter la fonction D dans votre calculatrice et observer le tableau des images de D.

4. Quelle est la valeur D,,,, sur laquelle se stabilisent les images par D des que n est assez grand

? (des que n > 16).

Cette valeur D,y est ce qu’on appelle La limite de la suite (u,). C’est a dire que c’est la valeur
que u, cherche a approcher de plus en plus quand en fait grandir la valeur de n de plus en plus (On
dit qu’ on fait converger n vers I’infini positif et on écrit n — +o0).
Important: Cette facon définir la limite n’est pas tres rigoureuse et ne peux pas étre
considérée que comme une introduction tres intuitive au sujet. Vous allez étudier le sujet
avec la rigueur qui lui est due I’année prochaine. "



36 Chapter 3. Les suites numériques

Définition 3.5.2 — Limite finie d’une suite numérique.

Soient (u,) une suite et / un nombre réel.

On dit que (u,) a pour limite réelle / ou que (u,) converge vers [ si les termes u, se rapprochent
de plus en plus vers [ lorsque n tend vers +co (ou encore n converge vers +oo). On note alors:

lim u, =1
n—- oo

R) Laconvergence d’une suite ou sa divergence (le contraire de converger) est ce qu’on qualifie
de comportement asymptotique d’une suite.
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4.1

Introduction

Le développement des probabilités, en tant qu’une branche des mathématiques, est un sujet tres
épineux et compliqué a aborder lorsqu’on s’intéresse a son évolution chronologique. En effet,
cette discipline, qui n’est considérée comme étant des mathématiques a part entiere que depuis tres
peu (a I’échelle de I’évolution des mathématiques tout au long de 1’existence humaine), a posée
beaucoup de problemes a la communauté mathématique.

Bien que quelques applications de calculs probabilistes aient été développé depuis le moyen
age, une vraie théorie (formalisée) des probabilités ne verra le jour qu’a partir du 17eme siécle.
I’enclenchement de la théorie va se faire par une correspondance écrite entre Blaise Pascal et
Pierre de Fermat autour du célebre probléme des parties. Suite a cela, et pendant deux siécles
entiers, la théorie va commencer a se préciser de plus en plus.

Les mathématiciens qui se sont penchés sur le sujet étaient confrontés a une difficulté double:

e Un probleme purement philosophique: On avait beaucoup de mal a accepter le fait
d’associer une science au hasard et a I’incertitude. Le philosophe Auguste Compte par
exemple, I’a toujours désigné comme étant une prétendue science des probabilités. On peut
aussi citer Joseph Bertrand qui écrit en I’an 1900:

"Comment oser parler des lois du hasard ? Le hasard n’est-il pas I’ antithese de

toute loi 7"
1

¢ Un probleme d’axiomatique et de définition: Les spécialistes ont eu beaucoup de mal a
définir rigoureusement la notion d’une probabilité. Il a fallut attendre 1933 pour qu’une
vraie théorie mathématique des probabilités voit le jour (Avec toutes les conditions d’une
théorie mathématique rigoureuse, notamment une base axiomatique). C’est le mathématicien
russe Andrei Kolmogorov qui va poser les trois axiomes qui définissent correctement une
probabilité en tant que mesure | (comprendre fonction pour I’instant) vérifiant les propriétés
suivantes:

IPierre Kahane, le mouvement Brownien Société mathématique de France.
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1. VAC Q;P(A) € [0;1]
2. P(Q)=1
3. Pour toute famille d’événements {A;;---;A, } deux a deux disjoints, nous avons :

n

P A :ZIP’(A,-)

i=1 i=1

Malgré les efforts et les travaux de Kolmogorov, la théorie ne fait pas tout de suite consensus, mais
elle commence a étre globalement acceptée vers la fin des années 50 (Le groupe Bourbaki ne la
reconnait toujours pas pendant les années 60 !).

4.2 Rappels de seconde

Définition 4.2.1 — Expérience aléatoire.

Une expérience aléatoire est une expérience qui peut conduire a plusieurs issues. Une seule
issue se réalise sans que I’on puisse la prévoir a 1I’avance.

C’est donc toute expérience dont I’issue dépend du hasard.

= Exemple 4.1
1. L’expérience qui consiste a lancer un dé est une expérience aléatoire.
2. Jouer a Pile ou Face est une expérience aléatoire.

Définition 4.2.2 — Univers, issues et événements.
Soit & une expérience aléatoire.
On appelle :
1. Une issue de &: un des résultats possible par I’expérience aléatoire &.
2. Un événement de &: un ensemble contenant plusieurs issues de &.
3. L’univers de &: L’ensemble qui contient toutes les issues possibles de &. On le note
souvent Q.

s Exemple 4.2
On considere &, I’expérience aléatoire qui consiste a lancer un dé a 6 faces numérotés de 1 a
6.Alors :

1. Les issues possibles de & sont : {1};{2};{3};:{4};{5};{6}. Vu la lourdeur de I’écriture,
nous pouvons écrire les issues ici sans accolades. Toutefois, il faut garder en téte que
c’est des ensembles. On ne peut donc pas les traiter comme des nombres (additionner,
soustraire...n’est pas possible).

2. L’univers de & est donc : Q = {1;2;3;4;5;6}

3. L’événement "Avoir un nombre paire" peut €tre écrit sous forme de I’ensemble suivant :
A ={2;4;6}.

* L’univers Q et ’ensemble vide (noté (), qui veut dire I’événement, "il ne se passe rien")
sont des éveénements de I’expérience aléatoire &

* Vu que les événements sont des ensembles, les opérations de base pour les manipuler
sont celles de la théorie des ensembles (intersection, union...). Voir vos cours de seconde
pour réviser cette partie.
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Définition 4.2.3 — Loi de probabilité d’une expérience aléatoire.

Soient n € N*, & une expérience aléatoire et Q := {i1;ip;--- ;i,} son univers.

On appelle une loi de probabilité (ou probabilité par abus de langage) sur € toute fonction
P:Q — [0;1] vérifiant :

£ 2= 1
k=1

= Exemple 4.3

Soit & I’expérience aléatoire qui consiste a tirer a pile ou face avec une piece truquée de facon a ce
qu’on ait deux fois plus de chance d’avoir pile que face.

L’univers de cette expérience est Q = {P;F} avec P I’événement "Avoir Pile" et F I’événement
"Avoir Face".

La fonction PP : Q — [0; 1] définie par: P(P) = % etP(F) = % est une loi de probabilité sur Q qui

décrit la situation de I’exemple. Vous pouvez facilement vérifier que c’est bien une probabilité. =
p) On dit qu’on a modélisé une expérience aléatoire, si on lui associe une loi de probabilité.

Propriété 4.2.1 — Propriétés algébriques d’une loi de probabilité.
Soit P une loi de probabilité sur un univers Q. Alros :

1. P(0)=0etP(Q)=1.

2.VACQ; 0<PA)<I.

3. VA;BC Q; P(AUB) =P(A)+P(B)—P(ANB).

4. VACQ; P(A)=1-P(A). Avec A I’événement contraire de A.

Exercice 4.1 En utilisant la propriété 3. et vos connaissances de I’année derniere, montrer la
propriété 4. ci-dessus.

Exercice 4.2 A la suite d’une étude statistique dans un grand magasin, on a noté les résultats
suivants concernant la demande quotidienne de téléviseurs.

Demande quotidienne 0 1 2 3 4 5 6
Probabilité 0.05 0.10 020 0.25 020 0.15 0.05

Table 4.1: Probabilités de la demande quotidienne sur les téléviseurs.

1. Vérifier que ce tableau représente bien une loi de probabilité.

2. Quelle est la probabilité de chacun des événements suivants :
* A :"Un jour donné, la demande est strictement inférieur a 4"
* B:"Un jour donné, la demande est au moins égale a 2 "

3. Quelle est la probabilité de I’événement A U B.

4. En déduire la probabilité de I’événement AN B.

Définition 4.2.4 — équiprobabilité.

Soient n € N*, & une expérience aléatoire, Q := {iy;i;--- ;i,} son univers et P une loi de
probabilité sur Q.

On dit que & est une expérience aléatoire équiprobable, si tous les événements ont la méme
probabilité de se réaliser. Autrement dit : P(iy) = P(ip) = P(i3) = - - - = P(in).

Proposition 4.2.2
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En restant dans les méme conditions de la définition précédente, on a :

1
Vke{l;---;n}; }P’(ik):H

Définition 4.2.5 — Cardinal d’'un ensemble.

Soit A un ensemble fini.

On appelle Cardinal de A, et on note Card(A), I'entier positif qui correspond au nombre
d’éléments de A.

s Exemple 4.4

1. Card(0) =0.
2. SiA = {x;y;z;t} alors Card(A) = 4.

Proposition 4.2.3 — Probabilité d’un événement dans une situation d’équiprobabilité.
Soient & une expérience aléatoire équiprobable, Q := {i;;i»;--- ;i, } son univers et P une probabilité
sur Q.

Si A est un événement de & (A C Q) alors:

_ Card(A)

P(A) := m

= Exemple 4.5

Une urne contient 2 boules rouges, 3 boules noirs et une boule blanche indiscernables au touché.
On se propose de tirer au hasard une boule de cette urne.

L’univers de cette expérience est donc :

Q = {R1;R2;N1;N2;N3; B}

On se propose de calculer la probabilité de I’événement R : "Tirer une boule rouge".
Cette expérience est une situation d’équiprobabilité, ainsi, on peut écrire :
_Card(R) 2 1

PR) = Card2) "6 3

Probabilités conditionnelles

Jusqu’ici, vous avez vu comment modéliser une situation probabiliste simple dans laquelle il n’y a
qu’une seule expérience aléatoire a la fois. Vous savez par exemple modéliser une situation d’un
lancé de dé, de piece de monnaie ou encore de tirage d’une carte au hasard dans un jeu.

Mais qu’en est-il des situations un peu plus complexes ? Et si au lieu de lancer un dé une seule
fois, on s’intéressait au résultats obtenus en lancant deux fois ? Voir plusieurs fois de suite ? Pour
illustrer la complexité de traitement de ce type de raisonnements avec vos connaissances actuelles
(et donc motiver les nouvelles notions que vous allez apprendre dans ce chapitre) commengant par
traiter un cas pratique :

= Exemple 4.6
On Lance un dé a 4 faces (Oui ¢a existe !) deux fois de suites et on note les deux résultats obtenus
sous forme de couple (x;y). On pose :

* 2 I'expérience aléatoire qui consiste a lancer le dé la premiere fois et £ son univers".
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* 2 ’expérience aléatoire qui consiste a lancer le dé la premiere fois et Q son univers".
* Z I’expérience aléatoire totale et Q son univers.

MY

Donner explicitement les ensembles Q. et ;.

Combien y a-t-il d’issues possible pour I’expérience .Z ?

Donner explicitement les issues possibles pour .Z.

Calculer la probabilité de I’événement X : "Le premier chiffre du couple (x;y) est égale a 3.
Calculer la probabilité de I’événement Y : "Le deuxieme chiffre du couple (x;y) est inférieur
strictement a 3.

Que remarquez-vous ? Cette méthodologie est-elle utilisable si nous augmentons le nombre
d’expériences ou le nombre d’issues pour chaque expérience (en utilisant un dé avec plus de
faces par exemple).

Pour gérer ce type de situations composées par la succession de plusieurs expériences aléatoires,
vous avez vu-lI’année derniére- la notion d’un arbre de probabilité. Ainsi, a titre d’exemple,
I’arbre de probabilité d’une situation de tirage a pile ou face deux fois de suite est le suivant :

/F
\P

La premicre colonne représente le premier tirage et la deuxieme colonne le dernier. Chaque
branche de I’arbre représente une seule issue possible de I’expérience composée (Avoir P puis F
par exemple).

Pour travailler les probabilités de ce type de situations avec un peu plus de rigueur, on se rend
compte tres vite que les notions que vous connaissez jusqu’ici ne sont pas suffisantes. C’est pour
cela qu’on introduit la définition suivante :

Définition 4.3.1 — Probabilité conditionnelle.

Soient A et B deux événements avec P(A) # 0.

On appelle La probabilité conditionnelle de B sachant A, la probabilité que I’événement B se
réalise lorsqu’on sait déja (avec certitude) que I’événement A c’est déja réalisé. Cette probabilité,
notée P4 (B) est donnée par :

P(ANB)

PA(B) = IP(A)

p) Pa(B) selit également : "la probabilité de B sachant A".

s Exemple 4.7
On tire une carte au hasard d’un jeu de 32 cartes. On note :
* A: "La couleur de la carte tirée est rouge". (La moité des cartes sont rouges)
* B: "La carte tirée est un valet" (Le jeu contient 4 valets; deux rouges et deux noirs)

1.
2.
3.
4.

Calculer P(A), P(B) et P(ANB).

Dessiner un arbre de probabilité qui illustre la situation.

Quelle est la probabilité que la carte tirée soit rouge sachant que c’est un valet ?
Quelle est la probabilité que la carte tirée soit un valet sachant qu’elle est rouge ?



44 Chapter 4. Probabilités conditionnelles

Propriété 4.3.1 — Propriétés algébriques d’'une probabilité conditionnelle.
Soient A et B deux événements d’un univers Q tels que A # 0. Alors :

1. Po(B) € [0;1]

2. P4(B)=1-P(A)

3. P(ANB) =P4(B) x P(A) (Principe multiplicatif)

4.4 Théoréme des probabilités totales

Nous avons vu dans le paragraphe précédent comment retrouver les probabilités conditionnelles a
partir des probabilités totales (probabilité normale que vous connaissez depuis le college). Mais
qu’en est-il du procédé inverse ? Comment peut-on retrouver la probabilité totale P(B) d’un
événement B lorsqu’on connait déja les probabilités conditionnelles de celui-ci?

La réponse a ces questions est donnée par un théoreme qu’on appelle: Le théoreme des probabilités

totales.
Définition 4.4.1 — Partition d’'un ensemble.
soient n € N*, E un ensemble quelconque et Aj;A3;- - ;A, des sous-ensembles de E.
On dit que les sous-ensemblesAy;- - - ;A, forment une partition de E si :

e AJUAU---UA, =F
e Vijje {1;2;---5n}; i#j = A;NA; =0 (On dit que les sous-ensembles sont deux a
deux disjoints).

= Exemple 4.8
On considere I’expérience aléatoire & qui consiste a lancer un dé non truqué a 6 face.
Vérifier que les deux événement suivants constituent une partition de Q 1’univers de &

* A: "Avoir un nombre pair"
* B: "Avoir un nombre impair"

R) Deux événements complémentaires forment toujours une partition de I’univers.

Théoréeme 4.4.1 — Théoréme des probabilités totales (Admis).
soient n € N*, Q I’univers d’une expérience aléatoire et Aj;Az;- - ;A, des événements de Q.
SiAj;Ag;---; Ay, forment une partition de Q alors :

VBCQ; P(B)= Z Py, (B) x P(Ay)
k=1
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" [5. Fonctions frigonométriques
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Introduction

La géométrie est de loin ’'une des disciplines mathématiques les plus anciennes, puisque son
développement a commencé des 1’antiquité. Les grecs, qui sont considéré comme les fondateurs
de la discipline, I’ont beaucoup utilisé dans leur vie courante. Il est effectivement assez simple de
comprendre 'utilité de la géométrie, deés que I’on commence a réfléchir a édifier et a construire.
C’est pour cette raison que les premiere traces de sa pratique remontent a 3000 Av.J-c: Les
civilisations égyptienne, Hindou et Babylonienne ont toutes laissés derriere elles, des édifices qui
témoignent d’un usage extensifs de la géométrie bien avant la Grece antique.

Mais qu’est ce que la géométrie au juste ? La réponse a cette question est complexe: Ce que
I’on considere comme faire de la géométrie a beaucoup changé depuis les débuts de la discipline.
Essayons d’y voir un peu plus clair en remettant les choses dans leur contexte historique:

» La géométrie classique : Les grecs faisaient, dans leur pratique des mathématiques, entre
deux branches principales: I’arithmétique (I’étude des nombres) et la géométrie. Cette
derniére détiens son nom du mot grec gémetron (gé pour terre et metron pour mesure). Faire
de la géométrie, durant 1’antiquité, faisait référence a 1’étude des relations spatiales des objets
tangibles. Puisque c’était une discipline que se pratiquait uniquement avec une regle, un
compas et un usage tres réduit du nombre elle contrastait avec 1’arithmétique qui était une
pratique lourdement calculatoire.

* Naissance de la géométrie analytique: L'une des plus grandes oeuvres de Descartes. En
réponse a la complexité grandissante des problemes géométriques traités, Descartes propose
de faire basculer 1’étude et la résolution des problemes de la géométrie des dessins vers le
calcul. Délaissant la regle et le compas au profit d’'une nouvelle facon de manipuler les
nombres : L’algebre. Cette révolution a permis d’effacer les frontieres entre algebre et
géométrie, d’ouvrir de nouvelles perspectives et de généraliser des concepts géométriques a
des dimensions qui était, jusqu’a ce moment la, insoupconnées.

En classe de 2nde, vous avez étudié comment Descartes a réussi, en introduisant 1’idée du repere, a
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transférer toute la théorie de géométrie plane (et dans 1’espace) vers une forme de calcul algébrique
tres facile a exécuter. La géométrie cartésienne nous permet maintenant de résoudre des problemes
tels que ceux liés aux parallélismes, aux intersections ou encore aux surfaces de manicre plus
méthodique et moins fastidieuse que ce qui était d’usage jusqu’ici en géométrie plane grecque.
La clé de ce changement majeur n’est rien d’autre que la notion de vecteur. C’est grace a elle
qu’on peut exprimer tout le reste. Néanmoins, il reste encore une composante indispensable a la
géométrie du plan que vous n’avez pas abordé: Les angles et leurs mesures.

Vu le succes de la géométrie cartésienne, il est treés 1égitime de nous demander s’il y a un moyen
d’exprimer des angles en fonction de vecteurs ? s’il y a un lien entre le calcul algébrique et
la notion d’angle ?

Le cercle trigonométrique, I'enroulement de la droite sur le cercle

Cercle trigonométrique et limites de la mesure en degré

Définition 5.2.1 — Cercle trigonométrique.

On appelle cercle trigonométrique tout cercle 4 de centre O et de rayon 1 sur lequel on a
désigné comme étant sens de rotation positif (ou direct), le sens inverse des aiguilles d’une
montre.

= Exemple 5.1

§
Ojlx
=

-,

Figure 5.1: Exemple d’un cercle trigonométrique centré a 1’origine d’un repere (0;?; /)

En considérant cette configuration, dans laquelle le sens de rotation est pertinent, on se rends
tres vite compte des limitations du systéme de mesure classique (en degrés). Pour s’en apercevoir,
essayez de faire I’exercice suivant:

Exercice 5.1 Placer un point M sur le cercle ¢ (figure 2.1) de fagon a ce que 1’angle MOI soit
égal a 45 degrés.

Il y a deux candidats potentiels comme réponse a cette question selon le sens de rotation. C’est
pour cela que les mathématiciens ont décidé d’élaborer un nouveau systeéme de mesure d’angles
qui prend en compte le sens de rotation en plus de la mesure algébrique de I’angle.
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5.2.2 L’enroulement de la droite sur le cercle et la mesure en radian

Afin de prendre en compte le sens de rotation dans un cercle trigonométrique, on essaye de faire
I’analogie avec une droite réelle (qui est orientée). Cela nous emmene a enrouler la droite sur le
cercle et ainsi définir une nouvelle unité de mesure des angles: Le radian. Cette échelle de mesure
fait référence a la distance du point M du cercle par rapport a I’origine de la droite réelle lorsqu’on
enroule cette derniere autour du cercle.

PR
S EENE]

-

N

I'\JI|:I

Figure 5.2: Exemple d’enroulement d’un cercle trigonométrique sur une droite orientée

Puisque le rayon du cercle trigonométrique est égal a 1, sa circonférence est égale a P = 27.
Ainsi, faire un tour complet du cercle dans le sens positif correspond a parcourir une distance de
27 sur la droite (d). On dit alors que 1’angle de mesure 360 dans le sens positif est 27 radian.

De la mé&me fagon, on peut alors déterminer les mesures en radian de tous les angles de référence
que vous connaissez déja :
Exercice 5.2 — Proportionnalité entre les mesures en degré et en radian.
Compléter le tableau des mesures en radian, des angles usuels exprimés en degré ci-dessous :

Mesure d’un angleendegré O 15 30 45 60 90 180 360

Sa mesure en radian T 2n

Dans la littérature mathématique, écrire les mesures en radian se fait sans indiquer le mot
"radian''. Ainsi, on écrit par exemple: ''L’angle plat est de mesure 7' au lieu d’écrire ''L’angle
plat est de mesure 7 radian"'.

Mais il y a un probléeme ! Nous avons dit que la mesure en radian correspond a la distance
entre |’origine de la droite réelle est le point qui correspond a M sur celle-ci. Sauf que ce point
correspondant sur la droite n’est pas du tout unique. On se retrouve alors avec une infinité de
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mesures pour le méme angle.

= Exemple 5.2
L’angle plat admet pour mesure 7. Mais aussi: 37; 57r; 77...et tout autre nombre qui peut s’écrire
sous la forme: 7+ 2k7m avec k € Z. "

toutes ces remarques et idées nous permettent d’aboutir a la proposition suivante a propos des
mesures en radian :

Proposition 5.2.1 — Propriétés du systéme de mesure en radian.
Soient (0;7; f) un repeére orthonormé et ¢ un cercle trigonométrique centré en O tel que 1’origine
des angles est le point /(1;0) (voir Figure 2.1).
On considére un point M(x,y) € €. Nous avons les propriétés suivantes :
1. L’angle géométrique oM possede un nombre infini de mesures en radian.
2. Toutes les mesures en radian de I’angle TOM sont des nombres réels exprimés sous la forme
6 =g.mavec g € Q.
3. Si 6 et 6 sont deux mesures du méme angle géométrique I@, alors la différence entre les
deux est un multiple de 27. Autrement dit :

JkeZ; 0—0 =2%n

Dans ce cas, on dit que 0 et 8’ sont des mesures associées.
4. Si 6 est une mesure en radian de 1/07/1, alors I’ensemble de toutes les mesures en radian de
cet angle est donné par :
{0+2kn | keZ}

Exercice 5.3
On représente dans les dessins suivants, les neufs premiers polygones réguliers inscrits dans un
cercle trigonométrique.

Figure 5.3: Polygones réguliers inscrits dans un cercle trigonométrique

1. Donner, dans chacun des cas ci-dessus, des mesures en radian des angles de type 10X tels
que X € {A;B;C;D;E;F;J;H;I;,J;K}
2. Ecrire, I’ensemble de toutes les mesures en radian de 1’angle JOA dans chacun des neufs cas.
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3. Donner deux nouvelles mesures de 1’angle I0A dans chacun des neufs cas.

Maintenant que nous avons établi comment trouver les mesures en radian associés a un angle
géométrique, il est intéressant de se restreindre (pour un usage plus pratique) a une seule mesure.
Pour faire cela, on introduit la définition suivante :

Définition 5.2.2 — Mesure principale d’un angle géométrique.
Soit € un cercle trigonométrique centré en O et donc 1’origine des angle est notée /.
On considere M un point du cercle € tel que IOM admet comme mesure en radian 6.
On dit qu’une mesure 6’ est une mesure principale de IOM si et seulement si :

e 0'c{060+2kn | keZ}

o 0 €]—m;m|

p) Lamesure principale d’un angle géométrique est unique.

= Exemple 5.3
On considere, dans les mémes conditions de la définition, I’angle /OM dont une mesure en radian

1257
est 8 = ——. Il est claire que cette mesure n’est pas une mesure principale puisque :
1257
=L g -m]

Afin de trouver la mesure principale associée a 0, la meilleure solution est de décomposer 6 en
une somme d’un angle 6’ et d’un multiple de 27 tels que : 6’ €] — 7; 7].
Voici comment il faut procéder :

1257 B 124n+n
2 2

= 627:—5—E

27:

= 2x31 —

X 7L'+2

z ty 2z z . . T .z
L’égalité que nous venons d’établir permet de dire que les mesures et 5 sont associées. De

T
plus, nous avons 5 €| —m;ml.
1257 T

Conclusion : La mesure principale associée a 0 = — est 5 "

Exercice 5.4 — Déterminer une mesure principale associée.
Déterminer la mesure principale associée a chacune des mesures suivantes puis placer les sur un
cercle trigonométrique :

la—43l
Y

T
2. p=-22
T

T
3.0=——=

6
4. y=1597
5 _4in
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5.3 Fonctions trigonométriques

5.3.1 Cosinus et sinus d’un nombre réel

Vous avez vu, lors de vous années de collége que nous pouvions définir le cosinus et le sinus d’un
angle a condition d’étre dans un triangle rectangle. Le dessin suivant probablement quelque chose
que vous avez appris par coeur : En analysant ces formules, vous vous rendez tres vite compte qu’il

Coté Hypoténuse

oppose

-
Coté ar,{jacmt
( coté adjacent inus(a) coté opposé
cos(a) = sinus(ax) =
) hypoténuse hypoténuse

Figure 5.4: Vos formules du college

y a deux problématiques majeures en lien avec cette facon de définir le cosinus et le sinus :

1. Les notions cos et sin sont limités aux angles aigus (i.e : [0;90]).

2. Les deux définitions sont conditionnés par I’existence d’un triangle rectangle.
Maintenant que nous avons une meilleure facon de mesurer les angles, nous allons étendre ces
notions pour couvrir toute la droite réelle.

Définition 5.3.1 — Cosinus et sinus d’'un nombre réel.

Soit x un nombre réel quelconque.

Soit € un cercle trigonométrique centré en O et donc 1’origine des angle est notée / dans repere
orthonormé (0;1, j).

Le nombre x peut toujours étre associé a un point M du cercle € de facon a ce que x soit une
mesure en radian de 1’angle géométrique oM.

On définit les nombres réels cos(x) et sin(x) par :
cos(x)=xy et sin(x)=yy

Avec : M(xp5ym)-

X

= = Tcos(x)
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= Exemple 5.4
Il est tres simple de vérifier sur un cercle trigonométrique que : sin(0) = 0 et que cos(0) = 1.

1. Cette facon de définir les fonctions cos et sin, nous permet donc de les étendre a
I’intégralité de R. Ainsi, nous pouvons écrire que :

cos:R— R e sin:R—R

2. Toutefois, nous pouvons nous apercevoir (et ¢’est assez simple a démonter) que 1’idée
de la projection fait que les valeurs de cos et sin vérifient la propriété suivante :

VxeR, cos(x)e[-1;1] et sin(x)e€[—1;1]

Il est donc plus judicieux d’écrire :

cos :R—[-1;1] et sin:R—[-1;1]

3. Les valeurs des deux fonctions trigonométriques pour les mesures d’angles usuelles
sont regroupées sur le cercle ci-dessous. Le cosinus se lit sur les axes des abscisses et le
sinus sur 1’axe des ordonnées. Il est tres recommandé de les apprendre par coeur.

2

1
2mi3 V3 3
2
ami4_ NG 4
: ;
51/6, 1 \ TI/6
2
L .i . o
- va vz 1 o 1vaVE o
T2 2 2 - 2 2 2
1
-511/6 p 2 *-mi6 +
V2
3mia” 2 "4
. V3 !
~21/3 ) -m/3
1

Figure 5.5: Images des mesures d’angles usuels par les fonctions cos et sin

Les résultats notés sur ce cercle se démontre en utilisant des techniques de géométrie
euclidienne. L’exercice qui suit a pour objectif de vous montrer un exemple de démonstration.

Exercice 5.5 — Démontrer que cos (g) = sin (E) =

2. Déterminer la valeur exacte de OH.

4

V2

5
Soit OHM un triangle isocele et rectangle en H tel que OM = 1.
1. Tracer une représentation géométrique du triangle OHM.

—

3. Déterminer la mesure en radian de ’angle géométrique HOM

4. En déduire que : cos (E> =sin (E)

4 4

V2

2
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Propriété 5.3.1 — Quelques propriétés algébriques des fonctions trigonométriques.
Les fonctions trigonométriques vérifient les propriétés suivantes pour tout x € R:

cos®(x) +sin*(x) = 1

—1<cos(x) <1 e —1<sin(x)<1

Vk € Z, cos(2krw+x) = cos(x) et sin(2km +x) = sin(x).

cos(—x) = cos(x) et sin(—x) = —sin(x).

cos(m —x) = —cos(x) et sin(w — x) = sin(x).

cos JH—x) —cos( ) et sin(m +x) = —sin(x).

cos ( ; ) et sin (g —x) = cos(x).

T
cos ( —sin(x) et sin (2 —i—x) = cos(x).

s Exemple 5.5

L N o=

Les propriétés énoncées ci-dessus sont souvent utilisées en combinaison avec les valeurs trigonométriques
associées aux angles usuels. Cela permet de calculer le cosinus ou le sinus d’angles moins

traditionnels. Par exemple :
1. Calculons cos

Voici comment il faut procéder :

cos (6;[) = cos (7r+ g) = —cos (g) =-1

3
2. De la méme facon, calculer sin (;)

Exercice 5.6 — calculs trigonométriques.
Déterminer la valeur exacte de chacune des expressions suivantes :

1 cos(3) +in ()
cos sin
3 6
2. cos <47r> —sin (g)
2 7
3. 3cos <37r> — 8sin <67r>
T 3n
4. cos (5) — sin <2>
Exercice 5.7 — utilisation des formules des angles associés.
1. Soit x € R. Simplifier au maximum les expressions suivantes :
T
* A=sin(3w —x)+sin(x—4m) — cos (5 —x)
4
* B=cos(3n —x)+cos(x —4m) — sin (5 —x>

2. Sans utiliser une calculatrice, calculer :

A= sin () tsin (8 ) sin (O ) tesin (O
=sin( 7 | +sin| — sin | = sin| =
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Propriétés analytiques des fonctions cosinus et sinus

Maintenant que nous avons réussi a étendre la notion de cosinus et sinus a I’ensemble des nombres
réels, il ne reste plus qu’a étudier I’aspect analytique de ces fonctions sur R et a les représenter
graphiquement.

Mais avant de le faire, rappelons la notion suivante :

Définition 5.3.2 — fonction T-périodique.
Soient f : R = R une fonction réelle et 7 € R
On dit que la fonction f est T-périodique lorsqu’elle vérifie :

VxeR, f(x+T)=f(x)
Nous avons déja établi dans la propriété 5.3.1 les deux caractéristiques suivantes :
Vk € Z,Nx € R, cos(2km+x)=cos(x) et sin(2kmw+x) = sin(x)
Dans le cas particulier de k = 1, on obtient donc que :
VxeR, cos(2m+x)=cos(x) et sin(2w+x) = sin(x)

Ainsi, d’apres la définition 5.3.2 les fonctions cosinus et sinus sont 27z-périodiques.

p) Pourquoi s’intéresser a la périodicité d’une fonction ?
Géométriquement, dire qu’'une fonction f est T-périodique revient a dire que sa courbe
représentative Cy sur R n’est rien d’autre qu’une répétition infinie du trongon de la courbe sur
[0;T]. Cela nous permet donc de limiter 1’étude des variations de f a I’intervalle [0;7].
Le reste de la courbe s’obtient par translation horizontale.

Figure 5.6: Représentations graphiques des fonctions cos et sin
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Introduction

Dans le chapitre précédent (celui des fonctions trigonométriques), nous nous somme posé la
question suivante :

Y a-t-il un lien d’exprimer les angles en fonction des vecteurs ?

Cela nous a amené a généraliser la notion de fonctions trigonométriques a R et a adopter une
nouvelle unité de mesure pour les angles qu’est le radian.

Toutefois, cela ne répond toujours pas a la question ci-dessus ( choses qui est passée completement
inapercue !!)

Il est maintenant temps de trouver une théorie qui permet d’étudier les propriétés des angles
géométriques grace a du calcul vectoriel. Autrement dit, en faisant un lien entre un angle et des
vecteurs. Pour réussir ce tour de force, William Hamilton invente la notion du produit scalaire en
1853.

On le définit comme étant le défaut d’orthogonalité exprimé en fonction de la différence des deux
membres de I’égalité de Pythagore.

Le défaut d’orthogonalité ?

Lorsqu’on commence a réfléchir au lien entre les angles et les vecteurs (leurs normes surtout), on
pense naturellement au théoréme de Pythagore dans un triangle rectangle : C’est la situation la
plus élémentaire dans laquelle un angle (droit) est caractérisé par une égalité vectorielle.
Afin de mieux I’expliquer, considérons la situation suivante :

On considere un triangle ABC rectangle en B quelconque. On note i = 1@ etv= Eg

Vous savez tous que nous pouvons écrire :

AC? = AB? + BC? et AC = AB+ BC = ii+7
Cela ne permet donc de récrire 1’égalité de Pythagore de la fagon suivante :

1+ 7117 = [[al]* + |7
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— T
Ainsi, on peut dire que I’angle ABC admet une mesure principale de 0 = 5 si et seulement si :
) 012 12
||| — [|a] | =[] = O

Posons d = ||ii +V]|? — ||i]|? — ||V |* et intéressons nous plus a cette quantité 12 :

Nous venons de dire qu’elle est nulle si I’angle est droit. Il en résulte naturellement que d # 0 dans
le cas contraire. Nous allons appeler cette quantité le défaut d’orthogonalité.

Voici les différents cas possibles lorsque le triangle ABC n’est pas rectangle (H est le pied de la
hauteur issue de C) : Afin de considérer d comme un critére viable de mesure du défaut de

Fic. 1-Cas 1 FiGc. 2 — Cas 2 Fic. 3 - Cas 3

Figure 6.1: Situations possibles lorsque le triangle ABC n’est pas rectangle

I’orthogonalité et faire le lien avec I’angle 0, il va falloir s’assurer que la formulation de ce lien
ne dépends pas du cas de figure.
Voici les étapes a suivre pour s’en assurer :

1. Pour chacune des figures ci-dessus, montrer que :

d = AC* —AB*> —BC?> = AH*> —AB>* -BH*>  (E)

2. On s’intéresse maintenant au Cas 1 : A, B et H sont alignés dans cet ordre donc on peut
écrire : AH = AB+ BH.
(a) Déduire de (E) que d = 2AB x BH.
(b) Démontrer alors que d = 2AB x ACcos(0)
3. On s’intéresse maintenant au Cas 2 : A, H et B sont alignés dans cet ordre donc on peut
écrire : AH = AB—BH.
(a) Déduire de (E) que d = —2AB x BH et que BH = BCcos(m — 6)
(b) En déduire que d = 2AB x ACcos(0).
4. On s’intéresse maintenant au Cas 3 : refaire le méme procédé que pour le Cas 2.

d . . .
On remarque alors que le nombre > est completement indépendant des différentes figures. Ceci

nous permet d’affirmer que c’est une caractéristique intrinseque a deux vecteurs quelconques.
C’est cette quantité 13, que nous allons appeler le produit scalaire de i et v.

6.3 Les différentes facons de définir le produit scalaire

Définition 6.3.1 — définition du produit scalaire.
Soient i, V¥ deux vecteurs du plan euclidien noté .
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On appelle produit scalaire de i et v, le nombre réel noté i.v tel que :

—_

i.v = o (|la+ 717~ |[al* ~ [9%)

p) Par convention, on note : i.ii := i

m Exemple 6.1 On considere la configuration géométrique suivante :
Calculer le produit scalaire AB.AD. "

4

Figure 6.2:

Le produit scalaire a la particularité de pouvoir étre définit de différentes facons. Nous venons
d’en voir une. Maintenant, nous allons démontrer qu’il peut aussi étre calculé via deux autres
forum les. Autrement dit, nous allons introduire deux autres définitions équivalentes a la définition
2.3.1.

Théoréeme 6.3.1 — deux autres fagons de définir ii.v.
Soient i, ¥ deux vecteurs du plan euclidien muni d’un repére orthonormé (0:7; j).

/
1. Sid <x> etv <x,> , alors :
y y

2. définition projective du produit scalaire:

iv=xx+y/

—

u.v = |lul| x ||V|]| x cos(i; V)

= Exemple 6.2
On considere un triangle équilatéral ABC tel que AB = AC = BC = 5cm.
1. Faire une représentation graphique de ce triangle.
2. Calculer les produit scalaire suivants de différentes méthodes : 1@1@ : @ﬁ' et ﬁB%

6.4 Propriétés du produit scalaire

Propriété 6.4.1 — Propriétés du produit scalaire.

Soient i, ¥ et w des vecteurs du plan euclidien muni d’un repére orthonormé (0;17; ). Alors :
1. Le produit scalaire est commutatif : #.V = vV.u
2. Le produit scalaire est distributif par rapport a 1’addition de deux vecteurs :

0.(V+ ) = .5+ i
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3. Le produit scalaire est distributif par rapport a la multiplication par un scalaire :
Va,b e R; (aii).(bV) = (ab)ui.v

4. Si les vecteurs i et V sont colinéaires et de méme sens, alors : .V = ||i]| x ||V||
5. Si les vecteurs i et V sont colinéaires et de sens contraires, alors : #.V = —||i|| x |[V]|
6. Siles vecteurs # et V sont colinéaires , alors : .V = ||| x ||V||

= Exemple 6.3
1. Dans un repére orthonormé (0;1; j), on considere les points A(1;2), B(5;—5), C(—1;3) et
D(2;2).
(a) Calculer les coordonnées des vecteurs zﬁ, R et C%
(b) Calculer les produits scalaires ﬁC—ﬁ et R.C
(¢) Calculer les coordonnées de ii = AB+ A
(d) Calculer ii.CD.
(e) Que remarquez-vous ?
2. On considere deux vecteurs du plan notés ii et V tels que il = —V.
Montrer que .V = —||if]|?.

Définition 6.4.1 — Projection orthogonale.
Soient A un point et (d) une droite dans un plan euclidien 2.
On appelle projection orthogonale de A sur (d), le point H tel que : (AH) L (d)

Propriété 6.4.2
Soient i et V¥ deux vecteurs du plan.
i et v sont orthogonaux si et seulement si: #.V = 0

Théoréme 6.4.3 — Produit scalaire et projection.
Soient E et C% deux vecteurs du plan euclidien .
On note H et K les projections orthogonales respectives de C et D sur la doite (AB).
Alors,
. Xg etﬁ de méme sens :f@@ =AB X KH.
. 1@ et ﬁ de sens contraires = @@ = —ABx KH.

6.5 Applications du produit scalaire : Relations métriques dans un triangle.

Le produit scalaire est un outil trés puissant en géométrie. Il permet notamment de généraliser
certaines des notions que vous connaissez déja (théoréme de Pythagore) et de démontrer assez
facilement quelques théorémes de la géométrie grecque de facon rapide et efficace.

Dans cette partie, nous allons aborder trois résultats géométriques tres intéressants qu’on peut
prouver griace au produit scalaire :

1. Larelation d’Al-Kashi: Al-Kashi mathématicien Perse du 14eme siecle généralise la relation
de Pythagore en adaptant son égalité a n’importe quel triangle.

2. Relation des sinus : On la doit & un mathématicien arabe du 13&me siecle du nom de Al-Tusi.
Ce théoreme permet de lier les rapports entre le sinus d’un angle et la longueur du coté
opposé dans un triangle quelconque.

3. Théoreme de la médiane: Démontré par Apollinus de Perge au 2éme sciecle Av.J.C. C’est
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ol K[ A .

Figure 6.3: Exemple d’une situation du théoreme 2.3.3

un théoréme qui permet de lier les différentes longueurs dans un triangle a sa médiane.

Théoreme 6.5.1 — Relation d’Al-Kashi.
Soit ABC un triangle quelconque du plan.
On note a, b et ¢ les longueurs des cotés opposés respectivement a A, B et C. Alors :

~

a® = b* +¢* —2bc.cos(A)

Théoreme 6.5.2 — Relation des sinus.
Soit ABC un triangle quelconque du plan.
On note a, b et ¢ les longueurs des c6tés opposés respectivement a A, B et C. Alors :

sin(A) _ sin(B) _ sin(C)

a b c

Théoréeme 6.5.3 — Théoréme de la médiane.
Soient ABC un triangle quelconque du plan et / le milieu de [BC].

Alors :

BC?
AB? +AC* =2A* + -
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7- Dérivéesdes fonctions[ réelles

Introduction

En mathématiques, ’analyse est la branche qui s’occupe du traitement explicite des notions des
limites, des dérivées et de I’intégration. Ces notions permettent toutes d’étudier des fonctions
avec une approche infinitésimale.

Le calcul infinitésimale est une approche qui consiste a étudier le comportement local d’une
fonction sur un voisinage tres restreint d’un point avant d’étendre les résultats globalement sur tout
le domaine de définition.

On doit la notion de dérivée, qui permet d’étudier les variations d’une fonction quelconque, aux
travaux de d’Isaac Newton et de Gottfried Wilhelm Leibniz. Tous les deux se sont intéressés au
probleme de I’étude des variations en s’inspirant des travaux de Wallis, de Descartes et de Fermat.
Newton appellera la nouvelle notion une "fluxion" et introduira les notations encore utilisées en
physique x; ...

f'(x): la notation usuelle de la dérivée d’une fonction f, celle qui est actuellement d’usage en
mathématiques a été introduire par le mathématicien Joseph-Louis Lagrange. C’est aussi a lui
que nous devons le nom de dérivée pour désigner cette notion.

Figure 7.1: Portraits de Newton (a gauche) et de Leibniz (a droite)
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7.2 Nombre dérivé et tangente

Lorsque vous avez étudié les variations d’une fonction affine d, définie sur R par:
VxeR, dx)=ax+b avec (a;b) € R?

Vous avez vu qu’on pouvait déterminer les variations de d simplement en évaluant le signe du
coefficient directeur a grace au théoréme suivant :

Théoréeme 7.2.1 — Variations d’une fonction affine.

Soit d une fonction affine définie sur R par d(x) = ax+b. Alors, nous avons:
* d est croissante si et seulement si a > 0.
e d est décroissante si et seulement si a < 0

Vu la simplicité d’évaluer le signe d’un nombre, nous avons tout intérét a généraliser ce concept a
une fonction quelconque f.

Bien évidement, contrairement & une droite, une fonction quelconque f ne gardera pas nécessairement
les mémes variations sur son domaine de définition. Afin de prendre cette contrainte en compte,
nous allons créer une quantité locale dont le signe nous permettra de connaitre les variations de la
fonction f au voisinage d’un point donné de coordonnées (a; f(a)).

Cette quantité s’appelle le nombre dérivé de f en a.

Définition 7.2.1 — taux d’accroissement ou encore taux de variation.
Soient f une fonction réelle et a € Dy un nombre réel.
Pour tout & € R* , on appelle taux d’accroissement de f entre a et a + h, le nombre réel .7 (h)
définit par:
h) —

p) 1l faut comprendre que le taux d’accroissement n’est rien d’autre que le coefficient directeur

Tauxdaccroissement

fla+h) — fla)
fepre |

C'estle coefiicient direcleur de la droite (AB),

Figure 7.2: Interprétation graphique du taux d’accroissement

de la droite reliant les points d’abscisses a et a + h.
A condition que la fonction f ne change pas de variations, on ce rends compte que la droite
résultante reproduit le sens de variation de la fonction f sur I'intervalle [a;a + h].
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Exercice 7.1 Calculer le taux d’accroissement au voisinage d’un point d’abscisse a pour chacune
des fonctions suivantes (simplifier le résultat au maximum).
1. f(x)=x°
2. f(x) =vx
3. flx) =x°
4. f(x)
5. f(x)
Définition 7.2.2 — Nombre dérivé en un point.
Soient f une fonction réelle et a € Dy un nombre réel.
On dit que la fonction f est dérivable au point d’abscisse a si la limite du taux d’accroissement
T (h) lorsque h — 0 existe et est finie. On note alors :

f'(@) = lim Zi(h)

X
5
X, neN

Cette limite s’appelle le nombre dérivé au point d’abscisse a.

s Exemple 7.1

* Un cas ou le nombre dérivé existe:
On considere la fonction f définie sur R par:

VxeR, f(x)=x

On cherche a calculer, s’il existe, le nombre dérivé de f au point d’abscisse a = 1.
Nous avons déja vu auparavant (Exercice précédent) que :

Ta(h) = 3a* +3ah+h*

Ainsi, on en déduit que :
Fi(h) =3+3h+h

Et que :
lim i (h) = lim 3+3h+h* =3
h—0 h—0

Ainsi, f/(1) existe et il est égal a 3.

¢ Un cas ou la fonction n’est pas dérivable en un point car non définie en ce point:

. . . s 1
On considére maintenant la fonction définie par f(x) = —
X

1. Donner le domaine de définition de f.

2. Calculer le taux d’accroissement au point d’abscisse 0, noté 7 (h).

3. Conjecturer a I’aide de la calculatrice, hlimo Zo(h) puis conclure.
—

* Cas ou la fonction est définie, mais pas dérivable en un point : Le cas de la fonction
valeur absolue (nous allons le voir en détail en classe).

R) (nterprétation graphique du nombre dérivé en un point)

Nous avons déja expliqué que le taux d’accroissement n’est rien d’autre que le coefficient
directeur de la droite (d) passant par les points A(a; f(a)) et Bla+h; f(a+h)).

Lorsqu’on fait tendre % vers 0, cela revient a rapprocher le point B au maximum du point A
jusqu’a ce que I’écart soit négligeable.

Ainsi, la droite (d) s’approchera de plus en plus vers une autre droite (7) qui ne croise la
courbe Cy qu’au point A (Au voisinage de celui ci seulement: ¢’est un comportement local).
La droite (7') s’appelle La tangente a Cy au point d’abscisse a. Son coefficient directeur

est f'(a).
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%
y=f(a) + f'(a) (x-a)
N .
f(a Pente f'(a)
1

> [f'(@)

IS
y=f(x)
a X

Figure 7.3: Tangente a Cy en un point d’abscisse a

Théoréme 7.2.2 — Equation de la tangente en un point.
Soient f une fonction réelle et a € Dy tels que f est dérivable en a.
La tangente a Cy au point d’abscisse a, notée (7,) admet pour équation réduite:

(Ta) :y = f'(a)(x—a) + f(a)

s Exemple 7.2

» Reprenons I’exemple avec la fonction réelle: f(x) = x>.

Nous avons déja montré que la fonction f est dérivable en 1 et que f'(1) = 3.
Ainsi, I’équation de la tangente en 1 est donnée par:
y=fME=-1+f01) & y=3-1+1
& y=3x-2
* Donner I’équation de la tangente a la courbe Cy dans chacun des cas suivants:
1. f(x)=x*eta=4.

2. f(x)=+xeta=2.
3. f(x)z;lceta:—l
4. f(x) =x"eta=0 (Avec n € N¥).

1. Une fonction f admet un extremum (minimum ou maximum) en a € Dy lorsque la
tangente a la courbe Cy est horizontale au point de coordonnées (a; f(a)).
2. Une tangente (7T,) est horizontale si et seulement si f/(a) =0

7.3 La fonction dérivée

7.3.1 Construction
Nous avons vu dans le paragraphe précédent comment construire le nombre dérivé en chaque point
d’une courbe de la fonction f qu’on note Cy. Le nombre dérivé f’(a) a la particularité de donner
une indication sur le sens de variation de f localement : C’est a dire dans un voisinage tres

restreint du point de coordonnées (a; f(a)).
Tout ce qui nous reste maintenant, c’est d’étendre cette notion pour qu’elle couvrent la totalité de

Dy le domaine de définition de la fonction f.
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Définition 7.3.1 — la fonction dérivée.
Soit f une fonction définie et dérivable sur un intervalle /.
On appelle la fonction dérivée de f, et on note f la fonction définie sur [ par:

o1 — R
¢ i SO A0

C’est la fonction qui associe a chaque élément x € I, le nombre dérivé f(x).

7.3.2 Dérivées des fonctions usuelles et opérations

Vous avez vu - dans la premiere partie de ce chapitre- a quel point calculer le nombre dérivé peut
s’avérer difficile. Une facon de contourner ce probleme de calcul fastidieux est de combiner une
connaissance des dérivées des fonctions usuelles avec les regles d’opérations sur les dérivées.
Le théoreme suivant énumere les dérivées des fonctions usuelles que vous connaissez jusqu’ici.

Théoreme 7.3.1 — dérivée des fonctions usuelles.
Le tableau suivant donne les formules des dérivées des fonctions usuelles :
Dérivées des fonctions usuelles
Fonction / Fonction dérivée [ Intervalles de dérivabilité
f(x)=k (constante réelle) f'x)=0 R
JSx)=x f)=1 R
S)y=ax+b S =a R
fx)=x? f(x)=2x R
f(x)=x" (neN) [ (x)=nx"! R
R P 10 oo
J@= fro=-= oo 0]
i 1 i n 10; +oe[
- — = n r =-_ — = _ -1 )
S(x) et (n€N) [ = Jme0; 0
] . 1
S(x)=+x S = x 10; +oo[
Exercice 7.1
Donner la dérivée de chacune des fonctions suivantes en précisant son domaine de dérivabilité:
1. f(x)=125.
2. f(x) =x".
1

Le théoréme ci-dessus n’est bien évidement pas suffisant pour espérer calculer les dérivées
des fonctions quelconques. Il faut en plus comprendre comment opérer sur les dérivées des
fonctions usuelles selon les opérations appliquées a ces dernieres. Ces opérations sont détaillées
dans le théoréme suivant :

Théoréme 7.3.2 — Opérations sur les dérivées.
Soient u : I — R et v : I — R deux fonctions dérivables sur /.
Alors :
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VneN;Vxel,  (u(x)") = nu (x)u(x)"".
Si v(x) # 0 pour tout x € 1, alors:

vaen () =S
« Vxel; (i‘gg)l _ W@)vx) —ulx)V'(x)

L.Vxel, (u+v)(x)=du(x)+V(x).

2. VkeRVxel;, (ku)'(x)=kxu(x).

i. Vxel, (uw)(x)=u(x)v(x)+u(x)V'(x).
5.

p) Important : Il m’arrive souvent de faire un abus de langage afin de simplifier les écritures.
Il faut comprendre que c’est une notation que j’introduis et que j’utilise en toute connaissance
de cause. Mais, il ne faut surtout pas la prendre par ce qu’elle n’est pas.

Je m’explique davantage : Pour des raisons pratiques, j’écris souvent (f(x))" au lieu de f’(x).
C’est juste une notation et il ne faut surtout pas la prendre au sens directe.

Exemple : Quand je note (x*)’ je veux dire par cela la dérivée de la fonction carrée évaluée
en x (dérivée qui vaut x — 2x), et non la dérivée du nombre x> (qui est toujours égale 2 0).

= Exemple 7.3

1. En utilisant les formules ci-dessus ainsi que le tableau du théoréme 4.3 donner I’expression
des dérivées des fonctions suivantes :
o f(x) =x*+3x-5.
o f(x)=xv1+x.

1
IRARAFEIRTY
S0 = 3\—/|—;Cx'

2. Déterminer le domaine de dérivabilité d’une fonction:
Il faut savoir qu’une fonction n’est pas automatiquement dérivable sur son domaine de
définition en entier. Prenons comme exemple la fonction f(x) = x+/1 +x dont vous avez
déja calculé la dérivée.
Le domaine de définition de cette fonction est donné par:

Dy={xeR|[I4+x>0} = [—1;+400]

Par contre, la fonction racine carrée n’est pas du tout dérivable en 0. Cela exclu —1 du
domaine de dérivabilité. Ainsi elle n’est dérivable que sur | — 1;4-oo]

7.4 Dérivée et variations d’une fonction

Maintenant que nous pouvons enfin déterminer le nombre dérivé en tout point de la courbe Cy, il
ne nous reste plus qu’a trouver un lien entre son signe et les variations de la fonction f - comme
nous I’avions énoncé au début du chapitre.

Théoréme 7.4.1 — Variations d’une fonction dérivable.
Soit f une fonction dérivable sur un intervalle I. Nous avons les résultats suivants :
1. f croissante sur / si et seulement si ~ Vx € I; f'(x) > 0.
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2. f décroissante sur [ si et seulement si  Vx € I; f'(x) < 0.
3. f constante sur [ si et seulement si  Vx € I; f'(x) = 0.

= Exemple 7.4

1. On considere la fonction définie sur R par: f(x) = x> +2x
f est une fonction définie et dérivable sur R. De plus, nous avons :

VxeR;  fl(x) =3x"+2

Il est tres facile de démontrer que la dérivée f” est strictement positive sur R. Ainsi, on peut
on déduire que la fonction f est croissante sur R.
2. Etudier les variations de la fonction f définie sur R par: f(x) = 2x> —3x+ 1

7.5 Dérivées et extrema d’une fonction
Définition 7.5.1 — Minimum / Maximum d’une fonction f.
Soit f une fonction définie sur un intervalle / et soita € I.
1. Ondit que f admet un maximum sur /, atteintenasi Vx€l,ona: f(x) < f(a).
2. On dit que f admet un minimum sur /, atteinten asi Vx € I,ona: f(x) > f(a).
On dit que m est un extremum de la fonction f, s’il est un minimum ou un maximum de la
fonction.

= Exemple 7.5
Un polynome de second degré noté p(x) = ax? + bx + ¢ admet un extremum sur R atteint au point

d’abscisse o0 = 5 Le démonstration de ce résultat est laissé a titre d’exercice. n
a

Théoréeme 7.5.1 — extremum et valeur de la dérivée.
Soit f une fonction dérivable sur un intervalle /. Nous avons le résultat suivant :

f admet un extremum en x € I <= f’(x) = 0 et f change de signe en x.

Exercice 7.2
On considere la fonction définie sur R par:

fx) =x>+3x%4+2x+5

1. Calculer la dérivée de f sur R.

2. Etudier le signe de f’ (x) sur R puis tracer son tableau de signe.
3. Tracer le tableau de variations de f.

4. En déduire les coordonnées des extremums de la fonction f.
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